

 Arduino Study kit

What Exactly is an Arduino?

Figure 1-1. An Arduino Uno

Wikipedia states “An Arduino is a single-board microcontroller and a software suite for programming it.
The hardware consists of a simple open hardware design for the controller with an Atmel AVR processor
and on-board I/O support. The software consists of a standard programming language and the boot loader
that runs on the board.”

To put that in layman’s terms, an Arduino is a tiny computer that you can program to process inputs
and outputs between the device and external components you connect to it (see Figure 1-1). The
Arduino is what is known as a Physical or Embedded Computing platform, which means that it is an
interactive system that can interact with its environment through the use of hardware and software. For
example, a simple use of an Arduino would be to turn a light on for a set period of time, let’s say 30
seconds, after a button has been pressed. In this example, the Arduino would have a lamp and a button
connected to it. The Arduino would sit patiently waiting for the button to be pressed; once pressed, the
Arduino would turn the lamp on and start counting. Once it had counted for 30 seconds, it would turn
the lamp off and then wait for another button press. You could use this setup to control a lamp in an
closet, for example.

You could extend this concept by connecting a sensor, such as a PIR, to turn the lamp on when it
has been triggered. These are some simple examples of how you could use an Arduino.

The Arduino can be used to develop stand-alone interactive objects or it can be connected to a
computer, a network, or even the Internet to retrieve and send data to and from the Arduino and then
act on that data. In other words, it can send a set of data received from some sensors to a website, which
can then be displayed in the form of a graph.

The Arduino can be connected to LEDs, dot matrix displays (see Figure 1-2), buttons, switches,
motors, temperature sensors, pressure sensors, distance sensors, GPS receivers, Ethernet modules, or
just about anything that outputs data or can be controlled. A look around the Internet will bring up a
wealth of projects where an Arduino has been used to read data from or control an amazing array of
devices.

Figure 1-2. A dot matrix display controlled by an Arduino (image courtesy of Bruno Soares)

The Arduino board is made up of an Atmel AVR Microprocessor, a crystal or oscillator (a crude clock
that sends time pulses at a specified frequency to enable it to operate at the correct speed), and a 5-volt
linear regulator. Depending on what type of Arduino you have, it may also have a USB socket to connect
to a PC or Mac for uploading or retrieving data. The board exposes the microcontroller’s I/O
(input/output) pins so that you can connect those pins to other circuits or to sensors.

The latest Arduino board, the Uno, differs from the previous versions of the Arduino in that it does
not use the FTDI USB-to-serial driver chip. Instead, it uses an Atmega8U2 programmed as a USB-to-
serial converter. This gives the board several advantages over its predecessor, the Duemilanove. First,
the Atmega chip is a lot cheaper than the FTDI chip, bringing the prices of the boards down. Secondly,
and most importantly, it enables the USB chip to have its firmware reflashed to make the Arduino show
up on your PC as another device, such as a mouse or game controller. This opens up a whole array of
new uses for the Arduino. Unfortunately, moving over to this new USB chip has made it a lot more
difficult for clone manufacturers to make Arduino Uno clones.

To program the Arduino (make it do what you want it to) you use the Arduino IDE (Integrated
Development Environment), which is a piece of free software in which you write code in the language
that the Arduino understands (a language called C). The IDE lets you to write a computer program, which
is a set of step-by-step instructions that you then upload to the Arduino. Your Arduino will then carry
out these instructions and interact with whatever you have connected to it. In the Arduino world,
programs are known as sketches.

The Arduino hardware and software are both open source, which means that the code, schematics,
design, etc. can be taken freely by anyone to do what they like with them. Hence, there are many clone
boards and other Arduino-based boards available to purchase or to make from a schematic. Indeed,
there is nothing stopping you from purchasing the appropriate components and making your own
Arduino on a breadboard or on your own homemade PCB (Printed Circuit Board). The only caveat that
the Arduino team imposes is that you cannot use the word “Arduino.” This name is reserved for the
official board. Hence, the clone boards have names such as Freeduino, Roboduino, etc.

As the designs are open source, any clone board is 100% compatible with the Arduino and therefore
any software, hardware, shields, etc. will also be 100% compatible with a genuine Arduino.

The Arduino can also be extended with the use of shields, which are circuit boards containing other
devices (e.g. GPS receivers, LCD Displays, Ethernet modules, etc.) that you can simply connect to the top
of your Arduino to get extra functionality. Shields also extend the pins to the top of its own circuit board
so you still have access to all of them. You don’t have to use a shield if you don’t want to; you can make
the exact same circuitry using a breadboard, Stripboard, Veroboard, or by making your own PCB. Most
of the projects in this book are made using circuits on a breadboard.

There are many different variants of the Arduino. The latest version is the Arduino Uno. The
previous version, the very popular Duemilanove (Italian for 2009), is the board you will most likely see
being used in the vast majority of Arduino projects across the Internet. You can also get Mini, Nano, and
Bluetooth variations of the Arduino. Another new addition to the product line is the Arduino Mega 2560;
it offers increased memory and number of I/O pins. The new boards use a new bootloader called
Optiboot, which frees up another 1.5k of flash memory and enables faster boot up.

Probably the most versatile Arduino, and hence the reason it is the most popular, is the Uno, or its
predecessor, the Duemilanove. This is because it uses a standard 28-pin chip attached to an IC
(Integrated Circuit) socket. The beauty of this system is that if you make something with an Arduino and
then want to turn it into something permanent, instead of using a relatively expensive Arduino board,
you can simply pop the chip out of the board and place it into your own circuit board in your custom
device. By doing so, you have made a custom embedded device, which is really cool.

Then, for a couple of quid or bucks, you can replace the AVR chip in your Arduino with a new one.
Note that the chip must be pre-programmed with the Arduino Bootloader (software programmed onto
the chip to enable it to be used with the Arduino IDE), but you can either purchase an AVR Programmer
to burn the bootloader yourself or you can buy a chip ready programmed; most of the Arduino parts
suppliers provide these. It is also possible to program a chip using a second Arduino; instructions are
available online for this.

Figure 1-3. Anthros art installation by Richard V. Gilbank controlled using an Arduino

If you do a search on the Internet for “Arduino,” you will be amazed at the large number of websites
dedicated to the Arduino or that feature cool project created with an Arduino. The Arduino is an
amazing device and will enable you to create anything from interactive works of art (see Figure 1-3) to
robots. With a little enthusiasm for learning how to program an Arduino and make it interact with other
components as well as a bit of imagination, you can build anything you can think of.

This book will give you the necessary skills needed to make a start in this exciting and creative
hobby. Now that you know what an Arduino is, let’s get one hooked up to your computer and start
using it.

Getting Started
This section will explain how to set up your Arduino and the IDE for the first time. The instructions for
Windows and Macs (running OSX 10.3.9 or later) are given. If you use Linux, refer to the Getting Started
instructions on the Arduino website at www.arduino.cc.playground/Learning/Linux. I will also presume
you are using an Arduino Uno. If you have a different type of board, such as the Duemilanove (see Figure
1-4), then refer to the corresponding page in the Getting Started guide of the Arduino website.

You will also need a USB cable (A to B plug type) which is the same kind of cable used for most
modern USB printers. If you have an Arduino Nano, you will need a USB A to Mini-B cable instead. Do
not plug in the Arduino just yet, wait until I tell you to do so.

Figure 1-4. An Arduino Duemilanove (image courtesy of Snorpey)

Next, download the Arduino IDE. This is the software you will use to write your programs (or
sketches) and upload them to your board. For the latest IDE go to the Arduino download page at
http://arduino.cc/en/Main/Software and obtain appropriate the version for your OS.

http://www.arduino.cc.playground/Learning/Linux
http://arduino.cc/en/Main/Software

Windows XP Installation
Once you have downloaded the latest IDE, unzip the file and double-click the unzipped folder to open it.
You will see the Arduino files and sub-folders inside. Next, plug in your Arduino using the USB cable and
ensure that the green power LED (labeled PWR) turns on. Windows will say “Found new hardware:
Arduino Uno” and the Found New Hardware Wizard will appear. Click next and Windows will attempt to
load the drivers. This process will fail. This is nothing to worry about; it’s normal.

Next, right-click on the My Computer icon on your desktop and choose Manage. The Computer
Management window will open up. Now go down to Event Manager in the System Tools list and click it.
In the right hand window, you’ll see a list of your devices. The Arduino Uno will appear on the list with a
yellow exclamation mark icon over it to show that the device has not been installed properly. Right click
on this and choose Update Driver. Choose “No, not this time” from the first page and click next. Then
choose “Install from a list or specific location (Advanced)” and click next again. Now click the “Include
this location in the search” and click Browse. Navigate to the Drivers folder of the unzipped Arduino IDE
and click Next. Windows will install the driver and you can then click the Finish button.

The Arduino Uno will now appear under Ports in the device list and will show you the port number
assigned to it (e.g. COM6). To open the IDE double-click the Arduino icon in its folder.

Windows 7 & Vista Installation
Once you have downloaded the latest IDE, unzip the file and double-click the unzipped folder to open it.
You will see the Arduino files and sub-folders inside. Next, plug in your Arduino using the USB cable and
ensure that the green power LED (labeled PWR) turns on. Windows will attempt to automatically install
the drivers for the Arduino Uno and it will fail. This is normal, so don’t worry.

Click the Windows Start button and then click Control Panel. Now click System and Security, then
click System, and then click Device Manager from the list on the left hand side. The Arduino will appear
in the list as a device with a yellow exclamation mark icon over it to show that it has not been installed
properly. Right click on the Arduino Uno and choose “Update Driver Software.”

Next, choose “Browse my computer for driver software” and on the next window click the Browse
button. Navigate to the Drivers folder of the Arduino folder you unzipped earlier and then click OK and
then Next. Windows will attempt to install the driver. A Windows Security box will open up and will state
that “Windows can’t verify the publisher of this driver software.” Click “Install this driver software
anyway.” The Installing Driver Software window will now do its business. If all goes well, you will have
another window saying “Windows has successfully updated your driver software. Finally click Close. To
open the IDE double-click the Arduino icon in its folder.

Mac OSX Installation
Download the latest disk image (.dmg) file for the IDE. Open the .dmg file; it will appear like Figure 1-5.

Figure 1-5. The Arduino .dmg file open in OSX

Drag the Arduino icon over to the Applications folder and drop it in there. If are using an older
Arduino, such as a Duemilanove, you will need to install the FTDI USB Serial Driver. Double-click the
package icon and follow the instructions to do this. For the Uno and Mega 2560, there is no need to
install any drivers.

To open the IDE, go into the Applications folder and click the Arduino icon.

Board and Port Selection
Once you open up the IDE, it will look similar to Figure 1-6.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Figure 1-6. The Arduino IDE when first opened

Now go to the menu and click Tools. Then click Board (See Figure 1-7).

Figure 1-7. The Arduino Tools menu

You will now be presented with a list of boards (See Figure 1-8). If you have an Uno, choose that. If
you have a Duemilanove or another Arduino variant, choose the appropriate one from the list.

Figure 1-8. The Arduino Boards menu

Next, click the Tools menu again, click Serial Port, and then choose the appropriate port from the
list for your Arduino (Figure 1-9). You are now ready to upload an example sketch to test that the
installation has worked.

Figure 1-9. The Serial Port list

Upload Your First Sketch
Now that you have installed the drivers and the IDE and you have the correct board and ports selected,
it’s time to upload an example sketch to the Arduino to test that everything is working properly before
moving on to the first project.

First, click the File menu (Figure 1-10) and then click Examples.

Figure 1-10. The File menu

You will be presented with a huge list of examples to try out. Let’s try a simple one. Click on Basics,
and then Blink (Figure 1-11). The Blink sketch will be loaded into the IDE.

Figure 1-11. The Examples menu

Next, click the Upload button (sixth button from the left) and look at your Arduino. (If you have an
Arduino Mini, NG, or other board, you may need to press the reset button on the board prior to pressing
the Upload button.) The RX and TX lights should start to flash to show that data is being transmitted
from your computer to the board. Once the sketch has successfully uploaded, the words “Done
uploading” will appear in the IDE status bar and the RX and TX lights will stop flashing.

Figure 1-12. LED 13 blinking

After a few seconds, you should see the Pin 13 LED (the tiny LED next to the RX and TX LEDs) start
to flash on and off at one second intervals. If it does, you have just successfully connected your Arduino,
installed the drivers and software, and uploaded an example sketch. The Blink sketch is a very simple
sketch that blinks LED 13 shown in Figure 1-12, the tiny green (or orange) LED soldered to the board
(and also connected to Digital Pin 13 from the microcontroller).

Before you move onto Project 1, let’s take a look at the Arduino IDE. I’ll explain each part of the
program.

The Arduino IDE
When you open up the Arduino IDE, it will look very similar to the image in Figure 1-13. If you are using
Windows or Linux, there may be some slight differences but the IDE is pretty much the same no matter
what OS you use.

Figure 1-13. What the IDE looks like when the application opens

The IDE is split into three parts: the Toolbar across the top, the code or Sketch Window in the
center, and the messages window in the bottom. The Toolbar consists of seven buttons. Underneath the
Toolbar is a tab, or set of tabs, with the filename of the sketch within the tab. There is also one button on
the far right hand side.

Along the top is the file menu with drop down menus labeled File, Edit, Sketch, Tools and Help. The
buttons in the Toolbar (see Figure 1-14) provide convenient access to the most commonly used
functions within this file menu.

Verify Stop New Open Save Upload Monitor

Figure 1-14. The Toolbar

The Toolbar buttons and their functions are listed in Table 1-1.

Table 1-1. The Toolbar button functions

Verify/Compile Checks the code for errors

Stop Stops the serial monitor, or un-highlights the other buttons

New Creates a new blank sketch

Open Shows a list of sketches in your Sketchbook to open

Save Saves the current Sketch to your Sketchbook

Upload Uploads the current Sketch to the Arduino

Serial Monitor Displays serial data being sent from the Arduino

The Verify/Compile button is used to check that your code is correct and error free before you

upload it to your Arduino board.
The Stop button stops the serial monitor from operating. It also un-highlights other selected

buttons. While the serial monitor is operating, you can press the Stop button to obtain a snapshot of the
serial data so far to examine it. This is particularly useful if you are sending data out to the Serial Monitor
quicker than you can read it.

The New button creates a new and blank sketch ready for you to enter your code into. The IDE asks
you to enter a name and a location for your sketch (try to use the default location if possible) and then
gives you a blank Sketch ready to be coded. The tab at the top of the sketch shows the name you have
given to your new sketch.

The Open button presents you with a list of sketches stored within your sketchbook as well as a list
of example sketches that you can try out with various peripherals. The example sketches are invaluable
for beginners to use as a foundation for their own sketches. Open the appropriate sketch for the device
you are connecting and then modify the code for your own needs.

The Save button saves the code within the sketch window to your sketch file. Once complete, you
will get a “Done Saving” message at the bottom of your code window.

The Upload to I/O Board button uploads the code within the current sketch window to your
Arduino. Make sure that you have the correct board and port selected (in the Tools menu) before
uploading. It is essential that you save your sketch before you upload it to your board in case a strange
error causes your system to hang or the IDE to crash. It is also advisable to hit the Verify/Compile button
before you upload to ensure there are no errors that need to be debugged first.

The serial monitor is a very useful tool, especially for debugging your code. The monitor displays
serial data being sent out from your Arduino (USB or serial board). You can also send serial data back to
the Arduino using the serial monitor. Clicking the Serial Monitor button results in a window like the one
in Figure 1-15.

On the bottom right side, you can select the Baud Rate that the serial data is to be sent to/from the
Arduino. The Baud Rate is the rate per second that state changes or bits (data) are sent to/from the
board. The default setting is 9600 baud, which means that if you were to send a text novel over the serial
communications line (in this case, your USB cable) then 1200 letters or symbols of the novel would be
sent per second (9600 bits/8 bits per character = 1200 bytes or characters). Note that bits and bytes will
be explained later.

Figure 1-15. The serial window in use

At the top is a blank text box for you to enter text to send back to the Arduino and a Send button to
make it happen. Note that the serial monitor can receive no serial data unless you have set up the code
inside your sketch for it to do so. Similarly, the Arduino will not receive any data sent unless you have
coded it to do so.

Finally, the black area is where your serial data will be displayed. In the image above, the Arduino is
running the ASCIITable sketch (from the Communications example). This program outputs ASCII
characters from the Arduino via serial (the USB cable) to the PC where the serial monitor then displays
them.

To start the serial monitor, press the Serial Monitor button. To stop it, press the Stop button. On a
Mac or in Linux, the Arduino board will reset itself (rerun the code from the beginning) when you click
the Serial Monitor button.

Once you are proficient at communicating via serial to and from the Arduino, you can use other
programs such as Processing, Flash, MaxMSP, etc. to communicate between the Arduino and your PC.
You will make use of the serial monitor later when you read data from sensors and get the Arduino to
send that data to the serial monitor in human readable form.

At the bottom of the IDE window is where you will see error messages (in red text) that the IDE will
display when trying to connect to your board, upload code, or verify code. At the bottom left of the IDE
you will see a number. This is the current location of the cursor within the program. If you have code in
your window and you move down the lines of code (using the ↓ key on your keyboard), you will see the
number increase as you move down the lines of code. This is useful for finding bugs highlighted by error
messages.

Across the top of the IDE window (or across the top of your screen if you are using a Mac) you will
see the various menus that you can click on to access more menu items (see Figure 1-16).

Figure 1-16. The IDE menus

The first menu is the Arduino menu (see Figure 1-17). The About Arduino option shows the current
version number, a list of the people involved in making this amazing device, and some further
information.

Figure 1-17. The Arduino menu

Underneath that is the Preferences option. This brings up the preferences window where you can
change various IDE options, such as your default Sketchbook location, etc. The Quit option quits the
program.

Figure 1-18. The File menu

The File menu (see Figure 1-18) is where can access options to create a new sketch, take a look at
sketches stored in your Sketchbook (as well as the example sketches), save your sketch or use the Save As
option if you want to give it a different name, upload your sketch to the I/O Board (Arduino), or print out
your code.

Figure 1-19. The Edit menu

The Edit menu (see Figure 1-19) offers options to let you to cut, copy, and paste sections of code.
You can also Select All of your code or Find certain words or phrases within the code. The useful Undo
and Redo options come in handy when you make a mistake.

Figure 1-20. The Sketch menu

The Sketch menu (see Figure 1-20) contains the Verify/Compile functions and other useful
functions including the Import Library option, which brings up a list of the available libraries stored
within your libraries folder.

A library is a collection of code that you can include in your sketch to enhance the functionality of
your project. It is a way of preventing you from re-inventing the wheel; instead, you can reuse code
already written by someone else for various pieces of common hardware. For example, the Stepper
library is a set of functions to control a stepper motor. Somebody else has kindly already created all of
the functions necessary to control a stepper motor, so by including the Stepper library into your sketch,
you can use those functions to control the motor. By storing commonly used code in a library, you can
re-use that code over and over in different projects. You can also hide the complicated parts of the code
from the user. I will go into greater detail concerning the use of libraries later on.

The Show Sketch Folder option opens the folder where your sketch is stored. The Add File option
lets you to add another source file to your sketch, which allows you to split larger sketches into smaller
files and then add them to the main sketch.

Figure 1-21. Tools menu

The Tools menu (see Figure 1-21) offers several options. You can select the Board and Serial Port, as
you did when setting up the Arduino for the first time. The Auto Format function formats your code to
make it look nicer. The Copy for Forum option copies the code within the sketch window, but in a
format that, when pasted into the Arduino forum (or most other Forums for that matter), will show up
the same as it is in the IDE, along with syntax coloring, etc. The Archive Sketch option lets you to
compress your sketch into a ZIP file and will ask you where you want to store it. Finally, the Burn
Bootloader option burns the Arduino Bootloader (the piece of code on the chip to make it compatible
with the Arduino IDE) to the chip. This option can only be used if you have an AVR programmer and if
you have replaced the chip in your Arduino or have bought blank chips to use in your own embedded
project. Unless you plan on burning many chips, it’s usually cheaper and easier to just buy an ATmega
chip (see Figure 1-22) with the Arduino Bootloader already pre-programmed. Many online stores stock
inexpensive pre-programmed chips.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Figure 1-22. An Atmel ATmega chip, the heart of your Arduino. (image courtesy of Earthshine

Electronics)

The final menu, Help, is where you can find more information about the IDE or links to the
reference pages of the Arduino website and other useful pages.

The Arduino IDE is pretty basic and you will learn how to use it quickly and easily as you work
through the projects. As you become more proficient at using an Arduino and programming in C (the
programming language used to code on the Arduino), you may find the Arduino IDE is too basic. If you
want something with better functionality, you can try one of the professional IDE programs (some of
which are free) such as Eclipse, ArduIDE, GNU/Emacs, AVR-GCC, AVR Studio, and even Apple’s XCode.

Now that you have your Arduino software installed, the board connected and working, and you have
a basic understanding of how to use the IDE, let's jump right in with Project 1 – LED Flasher.

21

Light ’Em Up

You are now going to work your way through the first four projects. These projects all use LED lights in
various ways. You will learn about controlling outputs from the Arduino as well as simple inputs such as
button presses. On the hardware side, you will learn about LEDs, buttons, and resistors, including pull
up and pull down resistors, which are important in ensuring that input devices are read correctly. Along
the way, you will pick up the concepts of programming in the Arduino language. Let’s start with a “Hello
World” project that makes your Arduino flash an external LED.

Project 1 – LED Flasher
For the first project, you are going to repeat the LED blink sketch that you used during your testing stage.
This time, however, you are going to connect an LED to one of the digital pins rather than using LED13,
which is soldered to the board. You will also learn exactly how the hardware and the software for this
project works, learning a bit about electronics and coding in the Arduino language (which is a variant of
C) at the same time.

Parts Required
Breadboard

5mm LED

100 ohm Resistor*

Jumper Wires

*This value may differ depending on what LED you use. The text will explain how to work it out.

The best kind of breadboard for the majority of the projects in this book is an 840 tie-point
breadboard. These are fairly standard sized breadboards, measuring approximately 16.5cm by 5.5cm
and featuring 840 holes (or tie points) on the board. Usually, the boards have little dovetails on the side
allowing you to connect several of them together to make larger breadboards; this is useful for more
complex projects. For this project though, any sized breadboard will do.

The LED should be a 5mm one of any color. You will need to know the current and voltage
(sometimes called forward current and forward voltage) of the LED so that you can calculate the resistor
value needed—you will work out this value later in the project.

The jumper wires you use can either be commercially available jumper wires (usually with molded
ends to make insertion into the breadboard easier) or you can make your own by cutting short strips of
stiff single core wire and stripping away about 6mm from the end.

Connecting Everything
First, make sure your Arduino is powered off by unplugging it from the USB cable. Now, take your
breadboard, LED, resistor, and wires and connect everything as shown in Figure 2-1.

Figure 2-1. The circuit for Project 1 – LED Flasher (see insert for color version)

It doesn’t matter if you use different colored wires or use different holes on the breadboard as long
as the components and wires are connected in the same order as in the picture. Be careful when
inserting components into the breadboard. If your breadboard is brand new, the grips in the holes will
be stiff. Failure to insert components carefully could result in damage.

Make sure that your LED is connected correctly with the longer leg connected to Digital Pin 10. The
long leg is the anode of the LED and must always go to the +5v supply (in this case, coming out of Digital
Pin 10); the short leg is the cathode and must go to Gnd (ground).

When you are sure that everything is connected correctly, power up your Arduino and connect the
USB cable.

Enter the Code
Open up your Arduino IDE and type in the code from Listing 2-1.

Listing 2-1. Code for Project 1

// Project 1 - LED Flasher
int ledPin = 10;
void setup() {
 pinMode(ledPin, OUTPUT);
}
void loop() {
 digitalWrite(ledPin, HIGH);
 delay(1000);
 digitalWrite(ledPin, LOW);
 delay(1000);
}

Press the Verify/Compile button at the top of the IDE to make sure there are no errors in your code.

If this is successful, click the Upload button to upload the code to your Arduino. If you have done
everything right, you should now see the red LED on the breadboard flashing on and off every second.

Let’s take a look at the code and the hardware to find out how they both work.

Project 1 – LED Flasher – Code Overview
The first line of code for this project is:

// Project 1 - LED Flasher

This is just a comment in your code. You can tell it’s a comment because it starts with // and any text

that begins this way will be ignored by the compiler. Comments are essential in your code; they help you
understand how your code works. As your projects get more complex and your code expands into
hundreds or maybe thousands of lines, comments will be vital in making it easy for you to see how each
section functions. You may come up with an amazing piece of code, but you can’t count on
remembering how it works when you revisit it several days, weeks, or months later. Comments, however,
will remind you of its functionality. Also, if your code is meant to be seen by other people, comments will
help that person understand what is going on in your code. The whole ethos of the Arduino, and indeed
the whole Open Source community, is to share code and schematics. I hope that when you start making
your own cool stuff with the Arduino you will be willing to share it with the world, too.

There is another format for making comments; it is a block statement bookended by /* and */ , like
so:

/* All of the text within
the slash and the asterisks
is a comment and will be
ignored by the compiler */

The IDE will automatically turn the color of any commented text to grey. The next line of the
program is

int ledPin = 10;

and this is what is known as a variable. A variable is a place to store data. In this case, you are setting up a
variable of type int or integer. An integer is a number within the range of -32,768 to 32,767. Next, you
have assigned that integer the name of ledPin and have given it a value of 10. (You didn’t have to call it
ledPin, you could have called it anything you wanted to. But you want your variable name to be
descriptive, so you call it ledPin to show that this variable sets which pin on the Arduino you are going to
use to connect your LED.) In this case, you are using Digital Pin 10. At the end of this statement is a semi-
colon. This symbol tells the compiler that this statement is now complete.

Although you can call your variables anything, every variable name in C must start with a letter; the
rest of the name can consist of letters, numbers, and underscore characters. Note that C recognizes
upper and lower case characters as being different. Finally, you cannot use any of C's keywords like
main, while, switch etc as variable names. Keywords are constants, variables, and function names that
are defined as part of the Arduino language. To help you avoid naming a variable after a keyword, all
keywords within the sketch will appear in red.

Imagine a variable as a small box where you can keep things. So in this sketch, you have set up an
area in memory to store a number of type integer and have stored in that area the number 10.

Finally, a variable is called a variable because you can change it. Later, you will carry out
mathematical calculations on variables to make your program do more advanced things.

Next is your setup() function:

void setup() {
 pinMode(ledPin, OUTPUT);
}

An Arduino sketch must have a setup() and loop() function, otherwise it will not work. The setup()

function runs once and once only at the start of the program and is where you will issue general
instructions to prepare the program before the main loop runs, such as setting up pin modes, setting
serial baud rates, etc. Basically, a function is a bunch of code assembled into one convenient block. For
example, if you created your own function to carry out a series of complicated mathematics that had
many lines of code, you could run that code as many times as you liked simply by calling the function
name instead of writing out the code again each time. You will go into functions in more detail later
when you start to create your own. In the case of this program, however, the setup() function only has
one statement to carry out. The function starts with

void setup()

This tells the compiler that your function is called setup, that it returns no data (void), and that you pass
no parameters to it (empty parenthesis). If your function returned an integer value and you also had
integer values to pass to it (e.g. for the function to process), it would look something like this:

int myFunc(int x, int y)

Here you have created a function (or a block of code) called myFunc. This function has been passed

two integers called x and y. Once the function has finished, it will then return an integer value to the
point after where your function was called in the program (hence int before the function name).

All of the code within the function is contained within the curly braces. A { symbol starts the block of
code and a } symbol ends the block. Anything in between those two symbols is code that belongs to the
function. (I will go into greater detail about functions later, so don’t worry about them for now.)

In this program, you have two functions; the first function is called setup and its purpose is to setup
anything necessary for your program to work before the main program loop runs:

void setup() {
 pinMode(ledPin, OUTPUT);
}

Your setup function only has one statement and that is pinMode, which telling the Arduino that you

want to set the mode of one of your pins to be Output mode, rather than Input. Within the parenthesis,
you put the pin number and the mode (OUTPUT or INPUT). Your pin number is ledPin, which has been
previously set to the value 10. Therefore, this statement is simply telling the Arduino that Digital Pin 10 is
to be set to OUTPUT mode. As the setup() function runs only once, you now move onto the main
function loop:

void loop() {
 digitalWrite(ledPin, HIGH);
 delay(1000);
 digitalWrite(ledPin, LOW);
 delay(1000);
}

The loop() function is the main program function and runs continuously as long as the Arduino is

turned on. Every statement within the loop() function (within the curly braces) is carried out, one by
one, step by step, until the bottom of the function is reached, then the loop starts again at the top of the
function, and so on forever or until you turn the Arduino off or press the Reset switch.

In this project, you want the LED to turn on, stay on for one second, turn off and remain off for one
second, and then repeat. The commands to tell the Arduino to do this are contained within the loop()
function because you wish them to repeat over and over. The first statement is

digitalWrite(ledPin, HIGH);

and this writes a HIGH or a LOW value to the pin within the statement (in this case ledPin, which is
Digital Pin 10). When you set a pin to HIGH, you are sending out 5 volts to that pin. When you set it to
LOW, the pin becomes 0 volts, or ground. This statement, therefore, sends out 5v to pin 10 and turns the
LED on. After that is

delay(1000);

and this statement simply tells the Arduino to wait for 1000 milliseconds (there are 1000 milliseconds in
a second) before carrying out the next statement of

digitalWrite(ledPin, LOW);

which will turn off the power going to Digital Pin 10 and therefore turn the LED off. Then there is
another delay statement for another 1000 milliseconds and then the function ends. However, as this is
your main loop() function, the function will start again at the beginning.

By following the program structure step by step again, you can see that it is very simple:

// Project 1 - LED Flasher
int ledPin = 10;
void setup() {
 pinMode(ledPin, OUTPUT);
}
void loop() {
 digitalWrite(ledPin, HIGH);
 delay(1000);
 digitalWrite(ledPin, LOW);
 delay(1000);
}

You start off by assigning a variable called ledPin, giving that variable a value of 10. Then you move

on to the setup() function where you set the mode for Digital Pin 10 as an output. In the main program
loop, you set Digital Pin 10 to high, sending out 5v. Then you wait for a second and then turn off the 5v to
Digital Pin 10, before waiting another second. The loop then starts again at the beginning: the LED will
turn on and off continuously for as long as the Arduino has power.

Now that you know this, you can modify the code to turn the LED on for a different period of time
and turn it off for a different time period. For example, if you wanted the LED to stay on for 2 seconds,
then go off for half a second, you could do the following:

void loop() {
 digitalWrite(ledPin, HIGH);
 delay(2000);
 digitalWrite(ledPin, LOW);
 delay(500);
}

If you would like the LED to stay off for 5 seconds and then flash briefly (250ms), like the LED

indicator on a car alarm, you could do this:

void loop() {
 digitalWrite(ledPin, HIGH);
 delay(250);
 digitalWrite(ledPin, LOW);
 delay(5000);
}

To make the LED flash on and off very fast, try this:

void loop() {
 digitalWrite(ledPin, HIGH);
 delay(50);
 digitalWrite(ledPin, LOW);
 delay(50);
}

By varying the on and off times of the LED you create any effect you want (well, within the bounds of
a single LED going on and off). Before you move onto something a little more exciting, let’s take a look at
the hardware and see how it works.

Project 1 – LED Flasher – Hardware Overview
The hardware used in Project 1:

Breadboard

5mm LED

100 ohm Resistor*

Jumper Wires

* or whatever value appropriate for your LED

The breadboard is a reusable solderless device used to prototype an electronic circuit or for
experimenting with circuit designs. The board consists of a series of holes in a grid; underneath the
board these holes are connected by a strip of conductive metal. The way those strips are laid out is
typically something like that in Figure 2-2.

Figure 2-2. How the metal strips in a breadboard are laid out

The strips along the top and bottom run parallel to the board and are design to carry your power rail
and your ground rail. The components in the middle of the board conveniently connect to either 5v (or
whatever voltage you are using) and ground. Some breadboards have a red and a black line running
parallel to these holes to show which is power (Red) and which is ground (Black). On larger breadboards,

the power rail sometimes has a split, indicated by a break in the red line. This makes it possible to send
different voltages to different parts of your board. If you are using just one voltage, a short piece of
jumper wire can be placed across this gap to make sure that the same voltage is applied along the whole
length of the rail.

The strips in the centre run at 90 degrees to the power and ground rails in short lengths and there is
a gap in the middle to allow you to put Integrated Circuits across the gap so that each pin of the chip
goes to a different set of holes and therefore a different rail (see Figure 2-3).

Figure 2-3. An Integrated Circuit (or chip) plugged across the gap in a breadboard

The next component is a resistor. A resistor is a device designed to cause resistance to an electric
current in order to cause a drop in voltage across its terminals. You can think of a resistor as a water pipe
that is a lot thinner than the pipe connected to it. As the water (the electric current) comes into the
resistor, the pipe gets thinner and the water volume (current) coming out of the other end is therefore
reduced. You use resistors to decrease voltage or current to other devices.

The value of resistance is known as an Ohm and its symbol is a Greek Omega symbol Ω. In this case,
Digital Pin 10 is outputting 5v DC at (according to the Atmega datasheet) 40mA (milliamps), and your
LEDs require (according to their datasheet) a voltage of 2v and a current of 35mA. Therefore, you need a
resistor that will reduce the 5v to 2v and the current from 40mA to 35mA if you want to display the LED
at its maximum brightness. If you want the LED to be dimmer, you could use a higher value of
resistance.

■ Note NEVER use a value of resistor that is LOWER than needed. You will put too much current through the LED
and damage it permanently. You could also damage other parts of your circuit.

The formula to work out what resistor you need is

R = (VS – VL) / I

where VS is the supply voltage, VL is the LED voltage, and I is the LED current. Your example LED has a
voltage of 2v and a current of 35mA connected to a digital pin from an Arduino, which gives out 5 volts,
so the resistor value needed would be

R = (5 – 2) / 0.035

which gives a value of 85.71.
Resistors come in standard values and the closest common value would be 100 Ω. Always choose the

next standard value resistor that is HIGHER than the value needed. If you choose a lower value, too
much current will flow through the resistor and will damage it.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

So how do you find a 100Ω resistor? A resistor is too small to contain easily readable labeling so
resistors instead use a color code. Around the resistor you will typically find 4 colored bands; by using
the color code in Table 2-1 you can find out the value of a resistor. Likewise, you can find the color code
for a particular resistance.

Table 2-1. Resistor color codes

Color 1st Band 2nd Band 3rd Band (multiplier) 4th Band (tolerance)

Black 0 0 x100

Brown 1 1 x101 ±1%

Red 2 2 x102 ±2%

Orange 3 3 x103

Yellow 4 4 x104

Green 5 5 x105 ±0.5%

Blue 6 6 x106 ±0.25%

Violet 7 7 x107 ±0.1%

Grey 8 8 x108 ±0.05%

White 9 9 x109

Gold x10-1 ±5%

Silver x10-2 ±10%

None ±20%

According to the table, for a 100Ω resistor you need 1 in the first band, which is brown, followed by a

0 in the next band, which is black. Then you need to multiply this by 101 (in other words add 1 zero),
which results in brown for the third band. The final band indicates the tolerance of the resistor. If your
resistor has a gold band, it has a tolerance of ±5 percent; this means the actual value of the resistor varies
between 95Ω and 105Ω. Therefore, if you have an LED that requires 2 volts and 35mA, you need a
resistor with a Brown, Black, Brown band combination.

If you need a 10K (or 10 kilo-ohm) resistor, you need a Brown, Black, Orange combination (1, 0, +3
zeros). If you need a 570K resistor, the colors would be Green, Violet, and Yellow.

Figure 2-4. A 10KΩ resistor with a 5 percent tolerance

In the same way, if you found a resistor and wanted to know its value, you would do the same in
reverse. So if you found the resistor in Figure 2-4 and wanted to find its value so you could store it away
in your nicely labeled resistor storage box, you could look at the table to see it has a value of 220Ω.

Now that you know how the color coding works, choose the correct resistance value for the LED you
have purchased to complete this project.

The final component (other than the jumper wires, but I’m sure you can figure out what they do for
yourself) is the LED, which stands for Light Emitting Diode. A diode is a device that permits current to
flow in only one direction; it’s just like a valve in a water system, but in this case it is letting electrical
current to go in one direction. If the current tries to reverse and go back in the opposite direction, the
diode stops it from doing so. Diodes can be useful to prevent someone from accidently connecting the
power and ground to the wrong terminals in a circuit and damaging the components.

An LED is the same thing, but it also emits light. LEDs come in all kinds of different colors and levels
of brightness, including the ultraviolet and infrared part of the spectrum (like in the LEDs in your TV
remote control).

If you look carefully at an LED you will notice two things: the legs are of different lengths, and one
side of the LED is flattened rather than cylindrical (see Figure 2-5). These are clues as to which leg is the
Anode (positive) and which is the Cathode (negative): the longer leg (Anode) gets connected to the
positive supply (3.3v) and the leg with the flattened side (Cathode) goes to ground.

■

Figure 2-5. The parts of an LED (image courtesy of Inductiveload from Wikimedia Commons)

If you connect the LED the wrong way, it will not damage it (unless you put very high currents
through it). However, it’s essential that you always put a resistor in series with the LED to ensure that the
correct current gets to the LED. You can permanently damage the LED if you fail to do this.

Note that you can also obtain bi-color and tri-color LEDs. These have several legs coming out of
them. An RGB LED has a red, green, and blue (hence RGB) LED in one package. This LED has four legs;
one will be a common anode or cathode (common to all three LEDs) and other legs will go to the anode
or cathode of an individual LED. By adjusting the brightness values of the R, G and B channels of the
RGB LED, you can get any color you want (the same effect can be obtained if you used three separate
red, green and blue LEDs).

Now that you know how the components function and how the code in this project works, let’s try
something a bit more interesting.

Project 2 – S.O.S. Morse Code Signaler
For this project, you are going to reuse the circuit set up from Project 1 (so no need for a Hardware
Overview), but you’ll use different code to make the LED signal the letters S.O.S., which is the
International Morse Code distress signal. Morse Code is a type of character encoding that transmits
letters and numbers using patterns of on and off. It is therefore nicely suited to your digital system as
you can turn an LED on and off in the necessary pattern to spell out a word or a series of characters. In

this case, the S.O.S. pattern is three dits (short flash), followed by three dahs (long flash), followed by
three dits again.

To flash the LED on and off in this pattern, signaling SOS, use the code in Listing 2-2.

Listing 2-2. Code for Project 2

// LED connected to pin 10
int ledPin = 10;

// run once, when the sketch starts
void setup()
{
 // sets the pin as output
 pinMode(ledPin, OUTPUT);
}

// run over and over again
void loop()
{
 // 3 dits
 for (int x=0; x<3; x++) {
 digitalWrite(ledPin, HIGH); // sets the LED on
 delay(150); // waits for 150ms
 digitalWrite(ledPin, LOW); // sets the LED off
 delay(100); // waits for 100ms
 }

 // 100ms delay to cause slight gap betyouen letters
 delay(100);
 // 3 dahs
 for (int x=0; x<3; x++) {
 digitalWrite(ledPin, HIGH); // sets the LED on
 delay(400); // waits for 400ms
 digitalWrite(ledPin, LOW); // sets the LED off
 delay(100); // waits for 100ms
 }

 // 100ms delay to cause slight gap betyouen letters
 delay(100);

 // 3 dits again
 for (int x=0; x<3; x++) {
 digitalWrite(ledPin, HIGH); // sets the LED on
 delay(150); // waits for 150ms
 digitalWrite(ledPin, LOW); // sets the LED off
 delay(100); // waits for 100ms
 }

 // wait 5 seconds before repeating the SOS signal
 delay(5000);
}

Create a new sketch and then type in the code from Listing 2-2. Verify that your code is error free
and then upload it to your Arduino. If all goes well, you will see the LED flash the Morse Code SOS signal,
wait 5 seconds, then repeat.

If you were to rig up a battery operated Arduino to a very bright light and place the whole assembly
into a waterproof and handheld box, it could be used to control an SOS emergency strobe light for used
on boats, while mountain climbing, etc.

Let’s figure out how this code works.

Project 2 – S.O.S. Morse Code Signaler – Code Overview
The first part of the code is identical to the last project where you initialize a variable and then set Digital
Pin 10 to be an output. In the main code loop, you can see the same kind of statements to turn the LEDs
on and off for a set period of time. This time, however, the statements are within three separate code
blocks.

The first block is what outputs the three dits:

for (int x=0; x<3; x++) {
 digitalWrite(ledPin, HIGH);
 delay(150);
 digitalWrite(ledPin, LOW);
 delay(100);
 }

You can see that the LED is turned on for 150ms and then off for 100ms; you can also see that those

statements are within a set of curly braces and are therefore in a separate code block. But, when you run
the sketch you can see the light flashes three times, not just once.

This is done using the for loop:

 for (int x=0; x<3; x++) {

This statement is what makes the code within the code block execute three times. There are three

parameters you need to give to the for loop. These are initialization, condition, and increment. The
initialization happens first and exactly once. Each time through the loop, the condition is tested; if it's
true, the statement block and the increment is executed, then the condition is tested again. When the
condition becomes false, the loop ends.

So, first you need to initialize a variable as the start number of the loop. In this case, you set up
variable X and set it to zero:

int x=0;

You then set a condition to decide how many times the code in the loop will execute:

x<3;

In this case, the code will loop if x is smaller than (<) 3. The code within a for loop will always

execute once no matter what the condition is set to.

The < symbol is what is known as a comparison operator. They are used to make decisions within
your code and to compare two values. The symbols used are:

 == (equal to)

 != (not equal to)

 < (less than)

 > (greater than)

 <= (less than or equal to)

 >= (greater than or equal to)

In your code, you are comparing x with the value of 3 to see if it is smaller than 3. If x is smaller than
3, the code in the block will repeat again.

The final statement

x++

is a statement to increase the value of x by 1. You could also have typed in x = x + 1, which would assign
to x the value of x + 1. Note there is no need to put a semi-colon after this final statement in the for loop.

You can do simple mathematics by using the symbols +, -, * and / (addition, subtraction,
multiplication and division). For example:

1 + 1 = 2

3 - 2 = 1

2 * 4 = 8

8 / 2 = 4

So, your for loop initializes the value of x to 0, then runs the code within the block (curly braces). It
then increases the increment (in this case, adds 1 to x). Finally, it checks that the condition is met, which
is that x is smaller than 3 and if so repeats.

Now that you know how the for loop works, you can see that there are three for loops in your code:
one that loops three times and displays the dits, one that repeats three times and displays the dahs, and
then there is a repeat of the dits again.

It must be noted that the variable x has a local scope, which means it can only be seen by the code
within its own code block, unless you initialize it before the setup() function, in which case it has global
scope and can be seen by the entire program. If you try to access x outside the for loop, you will get an
error.

In between each for loop is a small delay to make a tiny visible pause between letters of SOS.
Finally, the code waits for 5 seconds before the main program loop starts again from the beginning.

Now let’s move onto using multiple LEDs.

Project 3 – Traffic Lights
You are now going to create a set of traffic lights that will change from green to red, via amber, and back
again, after a set length of time using the four-state UK system. This project could be used to make a set
of working traffic lights for a model railway or for a child’s toy town. If you’re not from the UK, you can

modify the code and colors to make them work like the traffic lights in your own country. First, though,
make the project as it is and change it once you know how it works.

Parts Required
Breadboard

Red Diffused LED

Yellow Diffused LED

Green Diffused LED

3 x 150 ohm Resistors*

Jumper Wires

*or whatever value you require for your type of LED

Connect It Up
Connect your circuit as shown in Figure 2-6. This time you connect three LEDs with the anode of each
one going to Digital Pins 8, 9 and 10 via a 150Ω resistor (or whatever value you require) each.

Take a jumper wire from ground of the Arduino to the ground rail at the top of the breadboard; a
ground wire goes from the Cathode leg of each LED to the common ground rail via a resistor—this time
connected to the cathode. (For this simple circuit, it doesn’t matter if the resistor is connected to the
anode or cathode).

Figure 2-6. The circuit for Project 3 – Traffic Lights (see insert for color version)

Enter the Code
Enter the code from Listing 2-3, check it, and upload to your Arduino. The LEDs will now move through
four states that simulate the UK traffic light system, as seen in Figure 2-7. If you have followed Projects 1
and 2, both the code and the hardware for Project 3 will be self-explanatory. I shall leave you to examine
the code and figure out how it works.

Listing 2-3. Code for Project 3

// Project 3 - Traffic Lights

int ledDelay = 10000; // delay in between changes
int redPin = 10;
int yellowPin = 9;
int greenPin = 8;

void setup() {
 pinMode(redPin, OUTPUT);
 pinMode(yellowPin, OUTPUT);
 pinMode(greenPin, OUTPUT);
}

void loop() {

 digitalWrite(redPin, HIGH); // turn the red light on
 delay(ledDelay); // wait 5 seconds

 digitalWrite(yellowPin, HIGH); // turn on yellow
 delay(2000); // wait 2 seconds

 digitalWrite(greenPin, HIGH); // turn green on
 digitalWrite(redPin, LOW); // turn red off
 digitalWrite(yellowPin, LOW); // turn yellow off
 delay(ledDelay); // wait ledDelay milliseconds

 digitalWrite(yellowPin, HIGH); // turn yellow on
 digitalWrite(greenPin, LOW); // turn green off
 delay(2000); // wait 2 seconds

 digitalWrite(yellowPin, LOW); // turn yellow off
 // now our loop repeats

}

Figure 2-7. The four states of the UK traffic light system (image by Alex43223 from WikiMedia) (see insert

for color version)

Project 4 – Interactive Traffic Lights
This time you are going to extend the previous project to include a set of pedestrian lights and a
pedestrian push button to request to cross the road. The Arduino will react when the button is pressed
by changing the state of the lights to make the cars stop and allow the pedestrian to cross safely.

This is the first time you are going to interact with the Arduino and cause it to do something when
you change the state of a button that the Arduino is watching. In this project, you will also learn how to
create your own functions in code.

From now on, I will no longer list the breadboard and jumper wires in the parts required list. Note
that you will always need these basic components.

Parts Required

2 Red Diffused LEDs

Yellow Diffused LED

2 Green Diffused LEDs

150 ohm Resistor

4 Resistors

Pushbutton

Choose the appropriate value resistor for the LEDs you are using in your project. The 150Ω resistor
is for the pushbutton; it’s known as a pull down resistor (which I will define later). The pushbutton is
sometimes referred to by suppliers as a tactile switch and is ideal for breadboard use.

Connect It Up
Connect your circuit as shown in Figure 2-8. Double-check your wiring before providing any power to
your Arduino. Remember to have your Arduino disconnected to the power while wiring up the circuit.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Figure 2-8. The circuit for Project 4 - Traffic light system with pedestrian crossing and request button (see

insert for color version)

Enter the Code
Enter the code in Listing 2-4, verify, and upload it. When you run the program, it begins with the car
traffic light on green to allow cars to pass and the pedestrian light on red.

When you press the button, the program checks that at least 5 seconds have gone by since the last
time the lights changed (to allow traffic to get moving), and if so, passes code execution to the function
you have created called changeLights(). In this function, the car lights go from green to amber to red,
and then the pedestrian lights go green. After the period of time set in the variable crossTime (time
enough to allow the pedestrians to cross), the green pedestrian light flash on and off as a warning to the
pedestrians to hurry because the lights are about to change to red. Then the pedestrian light changes to
red, the vehicle lights go from red to amber to green, and the traffic flow resumes.

Listing 2-4. Code for Project 4

// Project 4 - Interactive Traffic Lights

int carRed = 12; // assign the car lights
int carYellow = 11;
int carGreen = 10;
int pedRed = 9; // assign the pedestrian lights
int pedGreen = 8;
int button = 2; // button pin
int crossTime = 5000; // time alloyoud to cross
unsigned long changeTime; // time since button pressed

void setup() {
 pinMode(carRed, OUTPUT);
 pinMode(carYellow, OUTPUT);
 pinMode(carGreen, OUTPUT);
 pinMode(pedRed, OUTPUT);
 pinMode(pedGreen, OUTPUT);
 pinMode(button, INPUT); // button on pin 2
 // turn on the green light
 digitalWrite(carGreen, HIGH);
 digitalWrite(pedRed, HIGH);
}

void loop() {
 int state = digitalRead(button);
 /* check if button is pressed and it is over 5 seconds since last button press */
 if (state == HIGH && (millis() - changeTime) > 5000) {
 // Call the function to change the lights
 changeLights();
 }
}

void changeLights() {
 digitalWrite(carGreen, LOW); // green off
 digitalWrite(carYellow, HIGH); // yellow on
 delay(2000); // wait 2 seconds

 digitalWrite(carYellow, LOW); // yellow off
 digitalWrite(carRed, HIGH); // red on
 delay(1000); // wait 1 second till its safe

 digitalWrite(pedRed, LOW); // ped red off
 digitalWrite(pedGreen, HIGH); // ped green on
 delay(crossTime); // wait for preset time period

 // flash the ped green
 for (int x=0; x<10; x++) {
 digitalWrite(pedGreen, HIGH);
 delay(250);
 digitalWrite(pedGreen, LOW);
 delay(250);
 }
 // turn ped red on
 digitalWrite(pedRed, HIGH);
 delay(500);

 digitalWrite(carYellow, HIGH); // yellow on
 digitalWrite(carRed, LOW); // red off
 delay(1000);
 digitalWrite(carGreen, HIGH);
 digitalWrite(carYellow, LOW); // yellow off

 // record the time since last change of lights
 changeTime = millis();
 // then return to the main program loop
}

Project 4 – Code Overview
You will understand and recognize most of the code in this project from previous projects. I’ll just point
out the new keywords and concepts:

unsigned long changeTime;

Here is a new data type for a variable. Previously, you created integer data types, which can store a

number between -32,768 and 32,767. This time you created a data type of long, which can store a
number from -2,147,483,648 to 2,147,483,647. However, you have specified an unsigned long, which
means the variable cannot store negative numbers, so the range is from 0 to 4,294,967,295. If you use an
integer to store the length of time since the last change of lights, you would only get a maximum time of
32 seconds before the integer variable reached a number higher than it could store.

As a pedestrian crossing is unlikely to be used every 32 seconds, you don’t want your program
crashing due to your variable “overflowing” when it tries to store a number too high for the variable data
type. So you use an unsigned long data type to get a huge length of time in between button presses:

4294967295 * 1ms = 4294967 seconds

4294967 seconds = 71582 minutes

71582 minutes - 1193 hours

1193 hours - 49 days

It’s pretty inevitable that a pedestrian crossing button will be pressed at least once in 49 days, so you
shouldn’t have a problem with this data type.

So why isn’t there just one data type that can store huge numbers all the time? Well, because
variables take up space in memory; the larger the number, the more memory is used up for storing
variables. On your home PC or laptop, you won’t have to worry about it much at all, but on a small
microcontroller like the Arduino’s Atmega32, it’s essential that you use only the smallest variable data
type necessary for your purpose.

Table 2-2 lists the various data types you can use in your sketches.

Table 2-2. Data types

Data type RAM Number Range

void keyword N/A N/A

boolean 1 byte 0 to 1 (True or False)

byte 1 byte 0 to 255

char 1 byte -128 to 127

unsigned char 1 byte 0 to 255

int 2 byte -32,768 to 32,767

unsigned int 2 byte 0 to 65,535

word 2 byte 0 to 65,535

long 4 byte -2,147,483,648 to 2,147,483,647

unsigned long 4 byte 0 to 4,294,967,295

float 4 byte -3.4028235E+38 to 3.4028235E+38

double 4 byte -3.4028235E+38 to 3.4028235E+38

string 1 byte + x Arrays of chars

array 1 byte + x Collection of variables

Each data type uses up a certain amount of memory: some variables use only 1 byte of memory and

others use 4 or more (don’t worry about what a byte is for now; I will discuss this later). Note that you
can’t copy data from one data type to another. In other words, if x was an int and y was a string, x = y
would not work because the two data types are different.

The Atmega168 has 1Kb (1000 bytes) and the Atmega328 has 2Kb (2000 bytes) of SRAM; this is not a
lot of memory. In large programs with lots of variables, you could easily run out of memory if you do not
optimize your usage of the correct data types. As you have used int (which uses up 2 bytes and can store

CHAPTER 2 ■ LIGHT 'EM UP

a number up to 32,767) to store the number of your pin, which will only go as high as 13 on your Arduino
(and up to 54 on the Arduino Mega), you have used up more memory than was necessary. You could
have saved memory by using the byte data type, which can store a number between 0 and 255—more
than enough to store the number of an I/O pin.

Next you have

 pinMode(button, INPUT);

which tells the Arduino that you want to use Digital Pin 2 (button = 2) as an INPUT. You are going to use
Digital Pin 2 to listen for button presses so its mode needs to be set to input.

In the main program loop, you check the state of pin 2 with this statement:

int state = digitalRead(button);

This initializes an integer (yes, it’s wasteful and you should use a boolean) called state and then sets

the value of state to be the value of Digital Pin 2. The digitalRead statement reads the state of the pin
within the parenthesis and returns it to the integer you have assigned it to. You can then check the value
in state to see if the button has been pressed or not:

 if (state == HIGH && (millis() - changeTime) > 5000) {
 // Call the function to change the lights
 changeLights();
 }

The if statement is an example of a control structure and its purpose is to check if a certain

condition has been met or not. If so, it executes the code within its code block. For example, if you
wanted to turn an LED on if a variable called x rose above the value of 500, you could write the following:

if (x>500) {digitalWrite(ledPin, HIGH);

When you read a pin using the digitalRead command, the state of the pin will either be HIGH or LOW.

So the if command in your sketch looks like this:

if (state == HIGH && (millis() - changeTime) > 5000)

What you are doing here is checking that two conditions have been met. The first is that the variable

called state is high. If the button has been pressed, state will be high because you have already set it to be
the value read in from Digital Pin 2. You are also checking that the value of millis()-changeTime is
greater than 5000 (using the logical AND command &&). The millis() function is one built into the
Arduino language, and it returns the number of milliseconds since the Arduino started to run the current
program. Your changeTime variable will initially hold no value, but after the changeLights) function
runs, you set it at the end of that function to the current millis() value.

By subtracting the value in the changeTime variable from the current millis() value, you can check
if 5 seconds have passed since changeTime was last set. The calculation of millis()- changeTime is put
inside its own set of parenthesis to ensure that you compare the value of state and the result of this
calculation, and not the value of millis() on its own.

The symbol && in between

state == HIGH

and the calculation is an example of a Boolean Operator. In this case, it means AND. To see what this
means, let’s take a look at all of the Boolean Operators:

&& - Logical AND

|| - Logical OR

! - NOT

These are logic statements and can be used to test various conditions in if statements.
&& means true if both operands are true, so this if statement will run its code only if x is 5 and y

is 10:

if (x==5 && y==10) {....

|| means true if either operand is true; for example, this if statement will run if x is 5 or if y is 10:

if (x==5 || y==10) {.....

The ! or NOT statement means true if the operand is false, so this if statement will run if x is false,

i.e. equals zero:

if (!x) {.......

You can also nest conditions with parenthesis, for example:

if (x==5 && (y==10 || z==25)) {.......

In this case, the conditions within the parenthesis are processed separately and treated as a single

condition and then compared with the second condition. So, if you draw a simple truth table (see Table
2-3) for this statement, you can see how it works.

Table 2-3. Truth table for the condition (x==5 && (y==10 || z==25))

x y z True/False?

4 9 25 FALSE

5 10 24 TRUE

7 10 25 FALSE

5 10 25 TRUE

The command within the if statement is

changeLights();

and this is an example of a function call. A function is simply a separate code block that has been given a
name. However, functions can be passed parameters and/or return data, too. In this case, you have not
passed any data to the function nor have you had the function return any date. I will go into more detail
later on about passing parameters and returning data from functions.

When changeLights() is called, the code execution jumps from the current line to the function,
executes the code within that function, and then returns to the point in the code after where the
function was called.

In this case, if the conditions in the if statement are met, then the program executes the code within
the function and returns to the next line after changeLights() in the if statement.

The code within the function simply changes the vehicles lights to red, via amber, then turns on the
green pedestrian light. After a period of time set by the variable crossTime, the light flashes a few time to
warn the pedestrian that his time is about to run out, then the pedestrian light goes red and the vehicle
light goes from red to green, via amber, thus returning to its normal state.

The main program loop simply checks continuously if the pedestrian button has been pressed or
not, and, if it has and (&&) the time since the lights last changed is greater than 5 seconds, it calls the
changeLights() function again.

In this program, there was no benefit from putting the code into its own function, apart from
making the code look cleaner and to explain the concept of functions. It is only when a function is
passed parameters and/or returns data that their true benefits come to light; you will take a look at that
later when you use functions again.

Project 4 – Interactive Traffic Lights - Hardware Overview
The new piece of hardware introduced in Project 4 is the button, or tactile switch. As you can see by
looking at the circuit, the button is not directly connected between the power line and the input pin;
there is a resistor going between the button and the ground rail. This is what is known as a pull-down
resistor and it is essential to ensure the button works properly. I will take a little diversion to explain pull-
up and pull-down resistors.

Logic States
A logic circuit is one designed to give an output of either on or off, which are represented by the binary
numbers 1 and 0. The off (or zero) state is a voltage near to zero volts at the output; a state of on (or 1) is
represented by a higher level, closer to the supply voltage. The simplest representation of a logic circuit
is a switch (see Figure 2-9).

Figure 2-9. The electronic symbol for a switch

When the switch is open, no current can flow through it and no voltage can be measured at the
output. When you close the switch, the current can flow through it, thus a voltage can be measured at
the output. The open state can be thought of as a 0 and the closed state as a 1 in a logic circuit.

In a logic circuit, if the expected voltage to represent the on (or 1) state is 5v, it’s important that
when the circuit outputs a 1 that the voltage is as close to 5v as possible. Similarly, when the output is a
zero (or off), it is important that the voltage is as close to zero volts as possible. If you do not ensure that
the states are close to the required voltages, that part of the circuit may be considered to be floating (it is
neither in a high or low state). The floating state is also known as electrical noise, and noise in a digital
circuit may be interpreted as random 1’s and 0’s.

This is where pull up or pull down resistors can be used to ensure the state is high or low. If you let
that node in the circuit float, it may be interpreted as either a zero or a one, which is not desirable. It’s
better to force it towards a desired state.

Pull-Down Resistors

Figure 2-10. A pull-down resistor circuit

Figure 2-10 shows a schematic where a pull-down resistor being used. If the button is pressed, the
electricity takes the path of least resistance and moves between the 5v and the input pin (there is a 100
ohm resistor on the input pin and a 10K ohm resistor on ground). However, when the button is not
pressed, the input is connected to the 100K ohm resistor and is pulled towards ground. Without this pull
to ground, the pin would not be connected to anything when the button was not depressed, thus it
would float between zero and 5v. In this circuit, the input will always be pulled to ground, or zero volts,
when the button is not pressed and it will be pulled towards 5v when the button is pressed. In other
words, you have ensured that the pin is not floating between two values. Now look at Figure 2-11.

Pull-Up Resistors

Figure 2-11. A pull-up resistor circuit

In this circuit, you have swapped the pull-down resistor and the switch. The resistor now becomes a
pull-up resistor. As you can see, when the button is not pressed, the input pin is pulled towards the 5v,
so it will always be high. When the button is pressed, the path of least resistance is towards the ground
and so the pin is pulled to ground or the low state. Without the resistor between 5v and ground, it would
be a short circuit, which would damage your circuit or power supply. Thanks to the resistor, it is no
longer a short circuit as the resistor limits the amount of current. The pull-up resistor is used more
commonly in digital circuits.

With the use of simple pull-up or pull-down resistors you can ensure that the state of an input pin is
always either high or low, depending on your application.

In Project 4, you use a pull-down resistor to ensure a button press will register correctly by the
Arduino. Let’s take a look at the pull-down resistor in that circuit again (see Figure 2-12).

Figure 2-12. A pull-down resistor from Project 4 (see insert for color version)

This circuit contains a push button. One pin of the button is connected directly to 5v and the other
is connected directly to Digital Pin 2. It is also connected directly to ground via a pull-down resistor. This
means that when the button is not pushed, the pin is pulled to ground and therefore reads a zero or low
state. When the button is pressed, 5 volts flows into the pin and it is read as a 1 or a high state. By
detecting if the input is high or low, you can detect if the button is pressed or not. If the resistor was not
present, the input pin wire would not be connected to anything and would be floating. The Arduino
could read this as either a HIGH or a LOW state, which might result in it registering false button presses.

Pull-up resistors are often used in digital circuits to ensure an input is kept high. For example, the
74HC595 Shift Register IC (Integrated Circuit) that you will be using later on in the book has a Master
Reset pin. This pin resets the chip when it is pulled low. As a result, it’s essential that this pin is kept high
at all times, unless you specifically want to do a reset; you can hold this pin high by using a pull-up
resistor at all times. When you want to reset it, you pull it low using a digital output set to LOW; at all
other times, it will remain high. Many other IC’s have pins that must be kept high for most of the time
and only pulled low for various functions to be activated.

The Arduino’s Internal Pull-Up Resistors
Conveniently, the Arduino contains pull-up resistors that are connected to the pins (the analog pins
have pull-up resistors also). These have a value of 20K ohms and need to be activated within software to
use them. To activate an internal pull-up resistor on a pin, you first need to change the pinMode of the pin
to an INPUT and then write a HIGH to that pin using a digitalWrite command:

pinMode(pin, INPUT);
digitalWrite(pin, HIGH);

If you change the pinMode from INPUT to OUTPUT after activating the internal pull-up resistors,
the pin will remain in a HIGH state. This also works in reverse: an output pin that was in a HIGH state
and is subsequently switched to an INPUT mode will have its internal pull-up resistors enabled.

Summary
Your first four projects covered a lot of ground. You now know the basics of reading inputs and turning
LEDs on and off. You are beginning to build your electronic knowledge by understanding how LEDs and
resistors work, how resistors can be used to limit current, and how they can be used to pull an input high
or low according to your needs. You should also now be able to pick up a resistor and work out its value
in ohms just by looking at its colored bands. Your understanding of the Arduino programming language
is well underway and you have been introduced to a number of commands and concepts.

The skills learned in Chapter 2 are the foundation for even the most complex Arduino project. In
Chapter 3, you will continue to use LEDs to create various effects, and in doing so will learn a huge
number of commands and concepts. This knowledge will set you up for the more advanced subjects
covered later in the book.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Subjects and Concepts Covered in Chapter 2:

• The importance of comments in code

• Variables and their types

• The purpose of the setup() and loop() functions

• The concept of functions and how to create them

• Setting the pinMode of a digital pin

• Writing a HIGH or LOW value to a pin

• How to create a delay for a specified number of milliseconds

• Breadboards and how to use them

• What a resistor is, its value of measurement, and how to use it to limit current

• How to work out the required resistor value for an LED

• How to calculate a resistor’s value from its colored bands

• What an LED is and how it works

• How to make code repeat using a for loop

• The comparison operators

• Simple mathematics in code

• The difference between local and global scope

• Pull up and pull down resistors and how to use them

• How to read a button press

• Making decisions using the if statement

• Changing a pins mode between INPUT and OUTPUT

• The millis() function and how to use it

• Boolean operators and how to use them to make logical decisions

■ ■ ■

LED Effects

In Chapter 2 you learned the basics of input and output, some rudimentary electronics, and a whole
bunch of coding concepts. In this chapter, you’re going to continue with LEDs, making them produce
some very fancy effects. This chapter doesn’t focus much on electronics; instead, you will be introduced
to many important coding concepts such as arrays, mathematic functions, and serial communications
that will provide the necessary programming skills to tackle the more advanced projects later in this
book.

Project 5 – LED Chase Effect
You’re going to use a string of LEDs (10 in total) to make an LED chase effect, similar to that used on the
car KITT on Knight Rider or on the face of the Cylons in Battlestar Galactica. This project will introduce
the concept of arrays.

Parts Required

10 5mm RED LEDs

10 Current Limiting Resistors

Connect It Up
First, make sure your Arduino is powered off by unplugging it from the USB cable. Now, use your
breadboard, LEDs, resistors, and wires to connect everything as shown in Figure 3-1. Check your circuit
thoroughly before connecting the power back to the Arduino.

Figure 3-1. The circuit for Project 5 – LED Chase Effect (see insert for color version)

Enter the Code
Open up your Arduino IDE and type in the code from Listing 3-1.

Listing 3-1. Code for Project 5

// Project 5 - LED Chase Effect
byte ledPin[] = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13}; // Create array for LED pins
int ledDelay(65); // delay between changes
int direction = 1;
int currentLED = 0;
unsigned long changeTime;

void setup() {
 for (int x=0; x<10; x++) { // set all pins to output
 pinMode(ledPin[x], OUTPUT); }
 changeTime = millis();
}

void loop() {
 if ((millis() - changeTime) > ledDelay) { // if it has been ledDelay ms since
last change
 changeLED();
 changeTime = millis();
 }
}

void changeLED() {
 for (int x=0; x<10; x++) { // turn off all LED's
 digitalWrite(ledPin[x], LOW);
 }
 digitalWrite(ledPin[currentLED], HIGH); // turn on the current LED
 currentLED += direction; // increment by the direction value
 // change direction if we reach the end
 if (currentLED == 9) {direction = -1;}
 if (currentLED == 0) {direction = 1;}
}

Press the Verify/Compile button at the top of the IDE to make sure there are no errors in your code. If
this is successful, click the Upload button. If you have done everything right, the LEDs will appear to
move along the line then bounce back to the start.

I haven’t introduced any new hardware in this project so there’s no need to take a look at that.
However, I have introduced a new concept in the code for this project in the form of arrays. Let’s take a
look at the code for Project 5 and see how it works.

Project 5 – LED Chase Effect – Code Overview
The first line in this sketch

byte ledPin[] = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13};

is a declaration of a variable of data type array. An array is a collection of variables that are accessed
using an index number. In your sketch, you declare an array of data type byte and called it ledPin. Then,
you initialize the array with 10 values (Digital Pins 4 through to 13). To access an element of the array,
you simply refer to the index number of that element. Arrays are zero indexed, which means that the first
index starts at zero and not 1. So, in your 10 element array, the index numbers are 0 to 9.In this case,
element 3 (ledPin[2]) has the value of 6 and element 7 (ledPin[6]) has a value of 10.

You have to tell the size of the array if you don’t initialize it with data first. In your sketch, you didn’t
explicitly choose a size because the compiler is able to count the values you have assigned to the array to
work out that the size is 10 elements. If you had declared the array but not initialized it with values at the
same time, you would need to declare a size. For example, you could have done this

byte ledPin[10];

and then loaded data into the elements later. To retrieve a value from the array, you would do something
like this:

x = ledpin[5];

In this example, x would now hold a value of 8.
To get back to your program, you have started off by declaring and initializing an array that stores 10

values, which are the digital pins used for the outputs to your 10 LEDs.
In your main loop, you check that at least ledDelay milliseconds have passed since the last change

of LEDs; if so, it passes control to your function. The reason you pass control to the changeLED() function
in this manner, rather than using delay() commands, is to allow other code to run in the main program
loop, if needed (as long as that code takes less than ledDelay to run).

The function you create is

void changeLED() {
 // turn off all LED's
 for (int x=0; x<10; x++) {
 digitalWrite(ledPin[x], LOW);
 }
 // turn on the current LED
 digitalWrite(ledPin[currentLED], HIGH);
 // increment by the direction value
 currentLED += direction;
 // change direction if we reach the end
 if (currentLED == 9) {direction = -1;}
 if (currentLED == 0) {direction = 1;}
}

and the job of this function is to turn all LEDs off and then turn on the current LED (this is done so fast
you will not see it happening), which is stored in the variable currentLED.

This variable then has direction added to it. As direction can only be either a 1 or a -1, the number
will either increase (+1) or decrease by one (currentLED +(-1)).

Then there’s an if statement to see if you have reached the end of the row of LEDs; if so, you reverse
the direction variable.

By changing the value of ledDelay you can make the LED ping back and forth at different speeds.
Try different values to see what happens.

Note that you have to stop the program, manually change the value of ledDelay, and then upload
the amended code to see any changes. Wouldn’t it be nice to be able to adjust the speed while the
program is running? Yes, it would, so let’s do exactly that in the next project. You’ll learn how to interact
with the program and adjust the speed using a potentiometer.

Project 6 – Interactive LED Chase Effect
Leave your circuit board intact from Project 5. You’re just going to add a potentiometer to this circuit,
which will allow you to change the speed of the lights while the code is running.

Parts Required
All of the parts for Project 5 plus....

4.7KΩ Rotary Potentiometer

Image courtesy of Iain Fergusson.

Connect It Up
First, make sure your Arduino is powered off by unplugging it from the USB cable. Now, add the
potentiometer to the circuit so it is connected as shown in Figure 3-2 with the left leg going to the 5v on
the Arduino, the middle leg going to Analog Pin 2, and the right leg going to ground.

Figure 3-2. The circuit for Project 6 – Interactive LED Chase Effect (see insert for color version)

56

Enter The Code
Open up your Arduino IDE and type in the code from Listing 3-2.

Listing 3-2. Code for Project 6

byte ledPin[] = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13}; // Create array for LED pins
int ledDelay; // delay between changes
int direction = 1;
int currentLED = 0;
unsigned long changeTime;
int potPin = 2; // select the input pin for the potentiometer

void setup() {
for (int x=0; x<10; x++) { // set all pins to output
 pinMode(ledPin[x], OUTPUT); }
 changeTime = millis();
}

void loop() {
ledDelay = analogRead(potPin); // read the value from the pot
 if ((millis() - changeTime) > ledDelay) { // if it has been ledDelay ms since
 last change
 changeLED();
 changeTime = millis();
 }
}

void changeLED() {
 for (int x=0; x<10; x++) { // turn off all LED's
 digitalWrite(ledPin[x], LOW);
 }
 digitalWrite(ledPin[currentLED], HIGH); // turn on the current LED
 currentLED += direction; // increment by the direction value
 // change direction if we reach the end
 if (currentLED == 9) {direction = -1;}
 if (currentLED == 0) {direction = 1;}
}

When you verify and upload your code, you should see the lit LED appear to bounce back and forth
between each end of the string of lights as before. But, by turning the knob of the potentiometer, you will
change the value of ledDelay and speed up or slow down the effect.

Let’s take a look at how this works and find out what a potentiometer is.

Project 6 – Interactive LED Chase Effect – Code Overview
The code for this Project is almost identical to the previous project. You have simply added a
potentiometer to your hardware and the code additions enable it to read the values from the
potentiometer and use them to adjust the speed of the LED chase effect.

You first declare a variable for the potentiometer pin

int potPin = 2;

because your potentiometer is connected to Analog Pin 2. To read the value from an analog pin, you use
the analogRead command. The Arduino has six analog input/outputs with a 10-bit analog to digital
convertor (I will discuss bits later). This means the analog pin can read in voltages between 0 to 5 volts in
integer values between 0 (0 volts) and 1,023 (5 volts). This gives a resolution of 5 volts / 1024 units or
0.0049 volts (4.9mV) per unit.

Set your delay using the potentiometer so that you can use the direct values read in from the pin to
adjust the delay between 0 and 1023 milliseconds (or just over 1 second). You do this by directly reading
the value of the potentiometer pin into ledDelay. Notice that you don’t need to set an analog pin to be an
input or output (unlike with a digital pin):

ledDelay = analogRead(potPin);

This is done during your main loop and therefore it is constantly being read and adjusted. By turning the
knob, you can adjust the delay value between 0 and 1023 milliseconds (or just over a second) and thus
have full control over the speed of the effect.

Let’s find out what a potentiometer is and how it works.

Project 6 – Interactive LED Chase Effect – Hardware Overview
The only additional piece of hardware used in this project is the 4K7 (4700Ω) potentiometer.

You know how resistors work. Well, the potentiometer is simply an adjustable resistor with a range
from 0 to a set value (written on the side of the pot). In this project, you’re using a 4K7 (4,700Ω)
potentiometer, which means its range is from 0 to 4700 Ohms.

The potentiometer has three legs. By connecting just two legs, the potentiometer becomes a
variable resistor. By connecting all three legs and applying a voltage across it, the pot becomes a voltage
divider. The latter is how you going to use it in your circuit. One side is connected to ground, the other to
5v, and the center leg to your analog pin. By adjusting the knob, a voltage between 0 and 5v will be
leaked from the center pin; you can read the value of that voltage on Analog Pin 2 and use it to change
the delay rate of the light effect.

The potentiometer can be very useful in providing a means of adjusting a value from 0 to a set
amount, e.g. the volume of a radio or the brightness of a lamp. In fact, dimmer switches for your home
lamps are a kind of potentiometer.

EXERCISES

You have all the necessary knowledge so far to adjust the code to enable you to do the following:

Project 7 – Pulsating Lamp
You are now going try a more advanced method of controlling LEDs. So far, you have simply turned the
LED on or off. Would you like to adjust the brightness of an LED? Can you do that with an Arduino? Yes,
you can.

Time to go back to basics.

Parts Required

Green Diffused 5mm LED

Current Limiting Resistor

Connect It Up
The circuit for this project is simply a green LED connecting, via a current limiting resistor, between
ground and Digital Pin 11 (see Figure 3-3).

• Exercise 1: Get the LEDs at BOTH ends of the strip to start as on, then move
towards each other, appear to bounce off each other, and then move back to the
end.

• Exercise 2: Make a bouncing ball effect by turning the LEDs so they are vertical,
then make an LED start at the bottom, then “bounce” up to the top LED, then back
to the bottom, then only up to the 9th LED, then back down, then up to the 8th,
and so on to simulate a bouncing ball losing momentum after each bounce.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Figure 3-3. The circuit for Project 7 – Pulsating Lamp (see insert for color version)

Enter the Code
Open up your Arduino IDE and type in the code from Listing 3-3.

Listing 3-3. Code for Project 7

// Project 7 - Pulsating lamp
int ledPin = 11;
float sinVal;
int ledVal;

void setup() {
 pinMode(ledPin, OUTPUT);
}

void loop() {
 for (int x=0; x<180; x++) {
 // convert degrees to radians then obtain sin value
 sinVal = (sin(x*(3.1412/180)));
 ledVal = int(sinVal*255);
 analogWrite(ledPin, ledVal);
 delay(25);
 }
}

Verify and upload. You will see your LED pulsate on and off steadily. Instead of a simple on/off state,
however, you’re going to adjust the brightness. Let’s find out how this works.

Project 7 – Pulsating Lamp – Code Overview
The code for this project is very simple, but it requires some explanation.

First, you set the variables for the LED Pin, a float (floating point data type) for a sine wave value,
and ledVal which will hold the integer value to send out to Digital PWM Pin 11.

The concept here is that you are creating a sine wave and having the brightness of the LED follow
the path of that wave. This is what makes the light pulsate instead of just flare to full brightness and fade
back down again.

You use the sin() function, which is a mathematical function, to work out the sine of an angle. You
need to give the function the degree in radians. So, you have a for loop that goes from 0 to 179; you don’t
want to go past halfway as this will take you into negative values and the brightness value can only be
from 0 to 255.

The sin() function requires the angle to be in radians and not degrees so the equation of
x*(3.1412/180) will convert the degree angle into radians. You then transfer the result to ledVal,
multiplying it by 255 to get the value. The result from the sin() function will be a number between -1
and 1, so multiply it by 255 for the maximum brightness. You cast the floating point value of sinVal into
an integer by the use of int() in the following statement:

ledVal = int(sinVal*255);

Then you send that value out to Digital PWM Pin 11 using the statement:

analogWrite(ledPin, ledVal);

Casting means you have converted the floating point value into an integer (effectively throwing away
whatever is after the decimal point). But, how can you send an analog value to a digital pin? Well, take a
look at your Arduino. If you examine the digital pins, you can see that six of them (3, 5, 6, 9, 10 & 11) have
PWM written next to them. These pins differ from the remaining digital pins in that they are able to send
out a PWM signal.

PWM stands for Pulse Width Modulation, which is a technique for getting analog results from digital
means. On these pins, the Arduino sends out a square wave by switching the pin on and off very fast. The
pattern of on/offs can simulate a varying voltage between 0 and 5v. It does this by changing the amount
of time that the output remains high (on) versus off (low). The duration of the on time is known as the
pulse width.

For example, if you were to send the value 0 out to Digital PWM Pin 11 using analogWrite(), the ON
period would be zero, or it would have a 0 percent duty cycle. If you were to send a value of 64 (25
percent of the maximum of 255) the pin would be ON for 25 percent of the time and OFF for 75 percent
of the time. The value of 191 would have a duty cycle of 75 percent; a value of 255 would have a duty
cycle of 100 percent. The pulses run at a speed of approximately 500Hz or 2 milliseconds each.

So, in your sketch, the LED is being turned on and off very fast. If the Duty Cycle was 50 percent (a
value of 127), the LED would pulse on and off at 500Hz and would display at half the maximum
brightness. This is basically an illusion that you can use to your advantage by allowing the digital pins to
output a simulated analog value to your LEDs.

Note that even though only six of the pins have the PWM function, you can easily write software to
give a PWM output from all of the digital pins if you wish.

Later, you’ll revisit PWM to create audible tones using a piezo sounder.

Project 8 – RGB Mood Lamp
In the last project, you learned how to adjust the brightness of an LED using the PWM capabilities of the
Atmega chip. You’ll now take advantage of this capability by using a red, green, and blue LED and mixing
these colors to create any color you wish. From that, you’ll create a mood lamp similar to those seen in
stores nowadays.

Parts Required
This time you are going to use three LEDs: one red, one green, and one blue.

Red Diffused 5mm LED

Green Diffused 5mm LED

Blue Diffused 5mm LED

3 Current Limiting Resistors

Connect It Up
Connect the three LEDs as shown in Figure 3-4. Get a piece of letter-size paper, roll it into a cylinder, and
tape it to secure it. Place the cylinder over the top of the three LEDs. This will diffuse the light from each
LED and merge the colors into one.

Figure 3-4. The circuit for Project 8 – RGB Mood Lamp (see insert for color version)

Enter the Code
Open up your Arduino IDE and type in the code from Listing 3-4.

Listing 3-4. Code for Project 8

// Project 8 - Mood Lamp
float RGB1[3];
float RGB2[3];
float INC[3];

int red, green, blue;

int RedPin = 11;
int GreenPin = 10;
int BluePin = 9;

void setup()
{
 randomSeed(analogRead(0));

 RGB1[0] = 0;
 RGB1[1] = 0;
 RGB1[2] = 0;

 RGB2[0] = random(256);
 RGB2[1] = random(256);
 RGB2[2] = random(256);
}

void loop()
{
 randomSeed(analogRead(0));

 for (int x=0; x<3; x++) {
 INC[x] = (RGB1[x] - RGB2[x]) / 256; }

 for (int x=0; x<256; x++) {
 red = int(RGB1[0]);
 green = int(RGB1[1]);
 blue = int(RGB1[2]);

 analogWrite (RedPin, red);
 analogWrite (GreenPin, green);
 analogWrite (BluePin, blue);
 delay(100);

 RGB1[0] -= INC[0];
 RGB1[1] -= INC[1];
 RGB1[2] -= INC[2];
 }

 for (int x=0; x<3; x++) {
 RGB2[x] = random(556)-300;
 RGB2[x] = constrain(RGB2[x], 0, 255);
 delay(1000);
 }
}

When you run this, you will see the colors slowly change. You’ve just made your own mood lamp!

Project 8 – RGB Mood Lamp – Code Overview
The LEDs that make up the mood lamp are red, green, and blue. In the same way that your computer
monitor is made up of tiny red, green, and blue (RGB) dots, you can generate different colors by
adjusting the brightness of each of the three LEDs in such a way to give you a different RGB value.

Alternatively, you could have used an RGB LED. This is a single 5mm LED, with 4 legs (some have
more). One leg is either a common anode (positive) or common cathode (negative); the other three legs
go to the opposite terminal of the red, green, and blue LEDs inside the lamp. It is basically three colored
LEDs squeezed into a single 5mm LED. These are more compact, but more expensive.

An RGB value of 255, 0, 0 is pure red. A value of 0, 255, 0 is pure green and 0, 0, 255 is pure blue. By
mixing these, you can get any color. This is the additive color model (see Figure 3-5). Note that if you
were just turning the LEDs ON or OFF (i.e. not trying out different brightness) you would still get
different colors.

Table 3-5. Colors available by turning LEDs ON or OFF in different combinations

Red Green Blue Color

255 0 0 Red

0 255 0 Green

0 0 255 Blue

255 255 0 Yellow

0 255 255 Cyan

255 0 255 Magenta

255 255 255 White

Diffusing the light with the paper cylinder mixes the colors nicely. The LEDs can be placed into any
object that will diffuse the light; another option is to bounce the light off a reflective diffuser. Try putting
the lights inside a ping-pong ball or a small white plastic bottle (the thinner the plastic the better).

By adjusting the brightness using PWM, you can get every other color in between, too. By placing
the LEDs close together and mixing their values, the light spectra of the three colors added together
make a single color (see Figure 3-5). The total range of colors available using PWM with a range of 0 to
255 is 16,777,216 colors (256x256x256).

Figure 3-5. Mixing R, G, and B to get different colors (see insert for color version)

In the code, you begin by declaring some floating point arrays and some integer variables to store
your RGB values as well as an increment value, like so:

float RGB1[3];
float RGB2[3];
float INC[3];

int red, green, blue;

In the setup function, you have the following:

randomSeed(analogRead(0));

The randomSeed command creates random (actually pseudo-random) numbers. A computer chip is not
able to produce truly random numbers so it looks at data in a part of its memory that may differ or it
looks at a table of different values and uses those as pseudo-random numbers. By setting a seed, you can
tell the computer where in memory or in that table to start counting from. In this case, the value you
assign to randomSeed is a value read from Analog Pin 0. Because there’s nothing connected to Analog
Pin 0, all it will read is a random number created by analog noise.

Once you have set a seed for your random number, you can create one using the random() function.
You then have two sets of RGB values stored in a three element array. RGB1 contains the RGB values you
want the lamp to start with (in this case, all zeros, or off):

 RGB1[0] = 0;
 RGB1[1] = 0;
 RGB1[2] = 0;

The RGB2 array is a set of random RGB values that you want the lamp to transition to:

 RGB2[0] = random(256);
 RGB2[1] = random(256);
 RGB2[2] = random(256);

In this case, you have set them to a random number set by random(256) which will give you a number
between 0 and 255 inclusive (as the number will always range from zero upwards).

If you pass a single number to the random() function, it will return a value between 0 and 1 less than
the number, e.g. random(1000) will return a number between 0 and 999. If you supply two numbers as
the parameters, it will return a random number between the lower number inclusive and the maximum
number (-1), e.g. random(10,100) will return a random number between 10 and 99.

In the main program loop, you first take a look at the start and end RGB values and work out what
value is needed as an increment to progress from one value to the other in 256 steps (as the PWM value
can only be between 0 and 255). You do this with the following:

 for (int x=0; x<3; x++) {
 INC[x] = (RGB1[x] - RGB2[x]) / 256; }

This for loop sets the INCrement values for the R, G and B channels by working out the difference
between the two brightness values and dividing that by 256.

You have another for loop

 for (int x=0; x<256; x++) {

 red = int(RGB1[0]);
 green = int(RGB1[1]);
 blue = int(RGB1[2]);

 analogWrite (RedPin, red);
 analogWrite (GreenPin, green);
 analogWrite (BluePin, blue);
 delay(100);

 RGB1[0] -= INC[0];
 RGB1[1] -= INC[1];
 RGB1[2] -= INC[2];
 }

that sets the red, green, and blue values to the values in the RGB1 array; writes those values to Digital
Pins 9, 10 and 11; deducts the increment value; and repeats this process 256 times to slowly fade from
one random color to the next. The delay of 100ms in between each step ensures a slow and steady
progression. You can, of course, adjust this value if you want it slower or faster; you can also add a
potentiometer to allow the user to set the speed.

After you have taken 256 slow steps from one random color to the next, the RGB1 array will have the
same values (nearly) as the RGB2 array. You now need to decide upon another set of three random
values ready for the next time. You do this with another for loop:

 for (int x=0; x<3; x++) {
 RGB2[x] = random(556)-300;
 RGB2[x] = constrain(RGB2[x], 0, 255);
 delay(1000);
 }

The random number is chosen by picking a random number between 0 and 556 (256+300) and then
deducting 300. In this manner, you are trying to force primary colors from time to time to ensure that
you don’t always just get pastel shades. You have 300 chances out of 556 in getting a negative number
and therefore forcing a bias towards one or more of the other two color channels. The next command
makes sure that the numbers sent to the PWM pins are not negative by using the constrain() function.

The constrain() function requires three parameters: x, a, and b where x is the number you want to
constrain, a is the lower end of the range, and b is the higher end. So, the constrain() function looks at
the value of x and makes sure it is within the range of a to b. If it is lower than a, it sets it to a; if it is higher
than b, it sets it to b. In your case, you make sure that the number is between 0 and 255 which is the
range of your PWM output.

As you use random(556)-300 for your RGB values, some of those values will be lower than zero; the
constrain function makes sure that the value sent to the PWM is not lower than zero.

EXERCISE

See if you can change the code to make the colors cycle through the colors of the rainbow rather than
between random colors.

Project 9 – LED Fire Effect
Project 9 will use LEDs and a flickering random light effect, via PWM again, to mimic the effect of a
flickering flame. If you place these LEDs inside a house on a model railway, for example, you can make it
look like the house is on fire, or you can use it in a fireplace in your house instead of wood logs. This is a
simple example of how LEDs can be used to create special effects for movies, stage plays, model
dioramas, model railways, etc.

Parts Required
This time we are going to use three LEDs: one red and two yellow.

Red Diffused 5mm LED

2 Yellow Diffused 5mm LED

3 Current Limiting Resistor

Connect It Up
Power down your Arduino, then connect your three LEDs as shown in Figure 3-6. This is essentially the
same circuit as in Project 8, but using one red and two yellow LEDs instead of a red, green, and blue.
Again, the effect is best seen when the light is diffused using a cylinder of paper, or when bounced off a
white card or mirror onto another surface.

Figure 3-6. The circuit for Project 9 – LED Fire Effect (see insert for color version)

Enter the Code
Open up your Arduino IDE and type in the code from Listing 3-5.

Listing 3-5. Code for Project 9

// Project 9 - LED Fire Effect
int ledPin1 = 9;
int ledPin2 = 10;
int ledPin3 = 11;

void setup()
{
 pinMode(ledPin1, OUTPUT);
 pinMode(ledPin2, OUTPUT);
 pinMode(ledPin3, OUTPUT);
}

void loop()
{
 analogWrite(ledPin1, random(120)+135);
 analogWrite(ledPin2, random(120)+135);
 analogWrite(ledPin3, random(120)+135);
delay(random(100));
}

Press the Verify/Compile button at the top of the IDE to make sure there are no errors in your code. If
this is successful, click the Upload button.

If you have done everything right, the LEDs will flicker in a random manner to simulate a flame or
fire effect.

Project 9 – LED Fire Effect – Code Overview
Let’s take a look at the code for this project. First, you declare and initialize some integer variables that
will hold the values for the digital pins you are connecting your LEDs to:

 int ledPin1 = 9;
 int ledPin2 = 10;
 int ledPin3 = 11;

Then, set them to be outputs:

 pinMode(ledPin1, OUTPUT);
 pinMode(ledPin2, OUTPUT);
 pinMode(ledPin3, OUTPUT);

The main program loop sends out a random value between 0 and 120; add 135 to it to get full LED
brightness for the PWM Pins 9, 10, and 11:

 analogWrite(ledPin1, random(120)+135);
 analogWrite(ledPin2, random(120)+135);
 analogWrite(ledPin3, random(120)+135);

Lastly, you have a random delay between ON and 100ms:

 delay(random(100));

The main loop then starts again, causing the flicker effect. Bounce the light off a white card or a mirror
onto your wall and you will see a very realistic flame effect.

The hardware is simple and you should understand it by now, so let’s move on to Project 10.

EXERCISE

Try out the following two exercises:

Project 10 – Serial Controlled Mood Lamp
For Project 10, you will revisit the circuit from Project 8 — RGB Mood Lamp, but you’ll now delve into
the world of serial communications. You’ll control your lamp by sending commands from the PC to the

• Exercise 1: Using a blue and/or white LED or two, see if you can recreate the effect
of the flashes of light from an arc welder.

• Exercise 2: Using blue and red LEDs, recreate the effect of the lights of an
emergency vehicle.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Arduino using the Serial Monitor in the Arduino IDE. Serial communication is the process of sending
data one bit at a time across a communication link.

This project also introduces how to manipulate text strings. So, set up the hardware as you did in
Project 8 and enter the new code.

Enter the Code
Open up your Arduino IDE and type in the code from Listing 3-6.

Listing 3-6. Code for Project 10

// Project 10 - Serial controlled mood lamp
char buffer[18];
int red, green, blue;

int RedPin = 11;
int GreenPin = 10;
int BluePin = 9;

void setup()
{
 Serial.begin(9600);
 Serial.flush();
 pinMode(RedPin, OUTPUT);
 pinMode(GreenPin, OUTPUT);
 pinMode(BluePin, OUTPUT);
}

void loop()
{
 if (Serial.available() > 0) {
 int index=0;
 delay(100); // let the buffer fill up
 int numChar = Serial.available();
 if (numChar>15) {
 numChar=15;
 }
 while (numChar--) {
 buffer[index++] = Serial.read();
 }
 splitString(buffer);
 }
}

void splitString(char* data) {
 Serial.print("Data entered: ");
 Serial.println(data);
 char* parameter;
 parameter = strtok (data, " ,");
 while (parameter != NULL) {

 setLED(parameter);
 parameter = strtok (NULL, " ,");
}

 // Clear the text and serial buffers
 for (int x=0; x<16; x++) {
 buffer[x]='\0';
 }
 Serial.flush();
}

void setLED(char* data) {
 if ((data[0] == 'r') || (data[0] == 'R')) {
 int Ans = strtol(data+1, NULL, 10);
 Ans = constrain(Ans,0,255);
 analogWrite(RedPin, Ans);
 Serial.print("Red is set to: ");
 Serial.println(Ans);
 }
 if ((data[0] == 'g') || (data[0] == 'G')) {
 int Ans = strtol(data+1, NULL, 10);
 Ans = constrain(Ans,0,255);
 analogWrite(GreenPin, Ans);
 Serial.print("Green is set to: ");
 Serial.println(Ans);
 }
 if ((data[0] == 'b') || (data[0] == 'B')) {
 int Ans = strtol(data+1, NULL, 10);
 Ans = constrain(Ans,0,255);
 analogWrite(BluePin, Ans);
 Serial.print("Blue is set to: ");
 Serial.println(Ans);
 }
}

Once you’ve verified the code, upload it to your Arduino.

Note when you upload the program nothing seems to happen. This is because the program is
waiting for your input. Start the Serial Monitor by clicking its icon in the Arduino IDE taskbar.

In the Serial Monitor text window, you’ll enter the R, G, and B values for each of the three LEDs
manually. The LEDs will change to the color you have input.

If you enter R255, the Red LED will display at full brightness. If you enter R255, G255, both the red
and green LEDs will display at full brightness. Now enter R127, G100, B255. You get a nice purplish color.
Typing r0, g0, b0 will turn off all of the LEDs.

The input text is designed to accept a lowercase or uppercase R, G, and B and then a value from 0 to
255. Any value over 255 will be dropped down to 255 by default. You can enter a comma or a space
between parameters and you can enter one, two, or three LED values at any once; for example:

r255 b100

r127 b127 g127

G255, B0

B127, R0, G255

Project 10 – Serial Controlled Mood Lamp – Code Overview
This project introduces a several new concepts, including serial communication, pointers, and string
manipulation. Hold on to your hat; this will take a lot of explaining.

First, you set up an array of char (characters) to hold your text string that is 18 characters long,
which is longer than the maximum of 16 allowed to ensure that you don’t get “buffer overflow” errors.

char buffer[18];

You then set up the integers to hold the red, green, and blue values as well as the values for the digital
pins:

int red, green, blue;

int RedPin = 11;
int GreenPin = 10;
int BluePin = 9;

In your setup function, you set the three digital pins to be outputs. But, before that, you have the
Serial.begin command:

void setup()
{
 Serial.begin(9600);
 Serial.flush();
 pinMode(RedPin, OUTPUT);
 pinMode(GreenPin, OUTPUT);
 pinMode(BluePin, OUTPUT);
}

Serial.begin tells the Arduino to start serial communications; the number within the parenthesis (in this
case, 9600) sets the baud rate (symbols or pulses per second) at which the serial line will communicate.

The Serial.flush command will flush out any characters that happen to be in the serial line so that it
is empty and ready for input/output.

The serial communications line is simply a way for the Arduino to communicate with the outside
world, which, in this case, is to and from the PC and the Arduino IDE’s Serial Monitor.

In the main loop, you have an if statement

if (Serial.available() > 0) {

that is using the Serial.available command to check to see if any characters have been sent down the
serial line. If any characters have been received, the condition is met and the code within the if
statements code block is executed:

if (Serial.available() > 0) {
 int index=0;
 delay(100); // let the buffer fill up
 int numChar = Serial.available();
 if (numChar>15) {
 numChar=15;
 }
 while (numChar--) {
 buffer[index++] = Serial.read();
 }
 splitString(buffer);
}

An integer called index is declared and initialized as zero. This integer will hold the position of a pointer
to the characters within the char array.

You then set a delay of 100. The purpose of this is to ensure that the serial buffer (the place in
memory where the received serial data is stored prior to processing) is full before you process the data. If
you don’t do that, it’s possible that the function will execute and start to process the text string before
you have received all of the data. The serial communications line is very slow compared to the execution
speed of the rest of the code. When you send a string of characters, the Serial.available function will
immediately have a value higher than zero and the if function will start to execute. If you didn’t have the
delay(100) statement, it could start to execute the code within the if statement before all of the text
string had been received, and the serial data might only be the first few characters of the line of text
entered.

After you have waited for 100ms for the serial buffer to fill up with the data sent, you then declare
and initialize the numChar integer to be the number of characters within the text string.

So, if we sent this text in the Serial Monitor

R255, G255, B255

the value of numChar would be 17. It is 17, and not 16, because at the end of each line of text there is an
invisible character called a NULL character that tells the Arduino when it has reached the end of the line
of text.

The next if statement checks if the value of numChar is greater than 15; if so, it sets it to be 15. This
ensures that you don’t overflow the array char buffer[18].

Next is a while command. This is something you haven’t come across before, so let me explain.
You have already used the for loop, which will loop a set number of times. The while statement is

also a loop, but one that executes only while a condition is true.
The syntax is as follows:

while(expression) {
 // statement(s)
}

In your code, the while loop is:

while (numChar--) {
 buffer[index++] = Serial.read();
 }

The condition it is checking is numChar. In other words, it is checking that the value stored in the integer
numChar is not zero. Note that numChar has -- after it. This is a post-decrement: the value is
decremented after it is used. If you had used –numChar, the value in numChar would be decremented
(have one subtracted from it) before it was evaluated. In your case, the while loop checks the value of
numChar and then subtracts 1 from it. If the value of numChar was not zero before the decrement, it
then carries out the code within its code block.

numChar is set to the length of the text string that you have entered into the Serial Monitor window.
So, the code within the while loop will execute that many times.

The code within the while loop is

buffer[index++] = Serial.read();

and this sets each element of the buffer array to each character read in from the Serial line. In other
words, it fills up the buffer array with the letters you entered into the Serial Monitor’s text window.

The Serial.read() command reads incoming serial data, one byte at a time. So now that your
character array has been filled with the characters you entered in the Serial Monitor, the while loop will
end once numChar reaches zero (i.e. the length of the string).

After the while loop you have

splitString(buffer);

which is a call to one of the two functions you created and called splitString(). The function looks like
this:

void splitString(char* data) {
 Serial.print("Data entered: ");
 Serial.println(data);
 char* parameter;
 parameter = strtok (data, " ,");
 while (parameter != NULL) {
 setLED(parameter);
 parameter = strtok (NULL, " ,");
 }

 // Clear the text and serial buffers
 for (int x=0; x<16; x++) {
 buffer[x]='\0';
 }
 Serial.flush();
}

The function returns no data, hence its data type has been set to void. You pass the function one
parameter, a char data type that you call data. However, in the C and C++ programming languages, you
are not allowed to send a character array to a function. You get around that limitation by using a pointer.
You know it’s a pointer because an asterisk has been added to the variable name *data.

Pointers are an advanced subject in C, so I won’t go into too much detail about them. If you need to
know more, refer to a book on programming in C. All you need to know for now is that by declaring data
as a pointer, it becomes a variable that points to another variable.

You can either point it to the address at which the variable is stored within memory by using the &
symbol, or in your case, to the value stored at that memory address using the * symbol. You have used it
to cheat the system, because, as mentioned, you aren’t allowed to send a character array to a function.
However, you are allowed to send a pointer to a character array to your function. So, you have declared a
variable of data type Char and called it data, but the * symbol before it means that it is pointing to the
value stored within the buffer variable.

When you call splitString(), you sent it the contents of buffer (actually a pointer to it, as you saw
above):

splitString(buffer);

So you have called the function and passed it the entire contents of the buffer character array.

The first command is

Serial.print("Data entered: ");

and this is your way of sending data back from the Arduino to the PC. In this case, the print command
sends whatever is within the parentheses to the PC, via the USB cable, where you can read it in the Serial
Monitor window. In this case, you have sent the words “Data entered: ”. Note that text must be enclosed
within quotes. The next line is similar

Serial.println(data);

and again you have sent data back to the PC. This time, you send the char variable called data, which is a
copy of the contents of the buffer character array that you passed to the function. So, if your text string
entered is

R255 G127 B56

then the

Serial.println(data);

command will send that text string back to the PC and print it out in the Serial Monitor window. (Make
sure you have enabled the Serial Monitor window first.)

This time the print command has ln on the end to make it println. This simply means “print with a
linefeed.”

When you print using the print command, the cursor (the point at where the next symbol will
appear) remains at the end of whatever you printed. When you use the println command, a linefeed
command is issued, so the text prints and then the cursor drops down to the next line:

Serial.print("Data entered: ");
Serial.println(data);

So if you look at your two print commands, the first one prints out “Data entered: ” and then the
cursor remains at the end of that text. The next print command will print data (which is the contents of
the array called buffer) and then issue a linefeed, which drops the cursor down to the next line. If you

issue another print or println statement after this, whatever is printed in the Serial Monitor window will
appear on the next line.

You then create a new char data type called parameter

Char* parameter;

and as you are using this variable to access elements of the data array, it must be the same type, hence
the * symbol. You cannot pass data from one data type variable to another; the data must be converted
first. This variable is another example of one that has local scope. It can be seen only by the code within
this function. If you try to access the parameter variable outside of the splitString() function, you will
get an error.

You then use a strtok command, which is a very useful command for manipulating text strings.
Strtok gets its name from String and Token because its purpose is to split a string using tokens. In your
case, the token it is looking for is a space or a comma; it’s being used to split text strings into smaller
strings.

You pass the data array to the strtok command as the first argument and the tokens (enclosed
within quotes) as the second argument. Hence

parameter = strtok (data, " ,");

and it splits the string at that point, which is a space or a comma.

So, if your text string is

R127 G56 B98

then after this statement the value of parameter will be

R127

because the strtok command splits the string up to the first occurrence of a space of a comma.

After you have set the d variable parameter to the part of the text string you want to strip out (i.e. the
bit up to the first space or comma), you then enter a while loop with the condition that the parameter is
not empty (i.e. you haven’t reached the end of the string):

while (parameter != NULL) {

Within the loop we call our second function:

setLED(parameter);

(We will look at this one in detail later.) Then you set the variable parameter to the next part of the string
up to the next space or comma. You do this by passing to strtok a NULL parameter, like so:

parameter = strtok (NULL, " ,");

This tells the strtok command to carry on where it last left off.

So this whole part of the function

char* parameter;
parameter = strtok (data, " ,");
while (parameter != NULL) {
 setLED(parameter);
 parameter = strtok (NULL, " ,");
 }

is simply stripping out each dpart of the text string that is separated by spaces or commas and sending
that part of the string to the next function called setLED().

The final part of this function simply fills the buffer array with NULL character, which is done with
the /0 symbol, and then flushes the serial data out of the serial buffer so that it’s ready for the next set of
data to be entered:

// Clear the text and serial buffers
for (int x=0; x<16; x++) {
 buffer[x]='\0';
}
Serial.flush();

The setLED() function is going to take each part of the text string and set the corresponding LED to the
color you have chosen. So, if the text string you enter is

G125 B55

the splitString()function splits that into the two separate components

G125
B55

and send that shortened text string onto the setLED() function, which will read it, decide what LED you
have chosen, and set it to the corresponding brightness value.

Let’s go back to the second function called setLED():

void setLED(char* data) {
 if ((data[0] == 'r') || (data[0] == 'R')) {
 int Ans = strtol(data+1, NULL, 10);
 Ans = constrain(Ans,0,255);
 analogWrite(RedPin, Ans);
 Serial.print("Red is set to: ");
 Serial.println(Ans);
 }
 if ((data[0] == 'g') || (data[0] == 'G')) {
 int Ans = strtol(data+1, NULL, 10);
 Ans = constrain(Ans,0,255);
 analogWrite(GreenPin, Ans);
 Serial.print("Green is set to: ");
 Serial.println(Ans);
 }

 if ((data[0] == 'b') || (data[0] == 'B')) {
 int Ans = strtol(data+1, NULL, 10);
 Ans = constrain(Ans,0,255);
 analogWrite(BluePin, Ans);
 Serial.print("Blue is set to: ");
 Serial.println(Ans);
 }
}

This function contains three similar if statements, so let’s pick one to examine:

if ((data[0] == 'r') || (data[0] == 'R')) {
 int Ans = strtol(data+1, NULL, 10);
 Ans = constrain(Ans,0,255);
 analogWrite(RedPin, Ans);
 Serial.print("Red is set to: ");
 Serial.println(Ans);
 }

The if statement checks that the first character in the string data[0] is either the letter r or R (upper case
and lower case characters are totally different as far as C is concerned. You use the logical OR command
(the symbol is ||) to check if the letter is an r OR an R, as either will do.

If it is an r or an R, the if statement knows you wish to change the brightness of the red LED, and the
code within executes. First, you declare an integer called Ans (which has scope local to the setLED
function only) and use the strtol (String to long integer) command to convert the characters after the
letter R to an integer. The strtol command takes three parameters: the string you are passing it, a pointer
to the character after the integer (which you won’t use because you have already stripped the string
using the strtok command and hence pass a NULL character), and the base (in your case, it’s base 10
because you are using normal decimal numbers as opposed to binary, octal or hexadecimal, which
would be base 2, 8 and 16 respectively). In summary, you declare an integer and set it to the value of the
text string after the letter R (or the number bit).

Next, you use the constrain command to make sure that Ans goes from 0 to 255 and no more. You
then carry out an analogWrite command to the red pin and send it the value of Ans. The code then sends
out “Red is set to: ” followed by the value of Ans back to the Serial Monitor. The other two if statements
do exactly the same but for the green and blue LEDs.

You have covered a lot of ground and many new concepts in this project. To make sure you
understand exactly what is going on in this code, I have set the project code (which is in C, remember)
side by side with pseudo-code (essentially, the computer language described in more detail via whole
words and thoughts). See Table 3-7 for the comparison.

Table 3-7. An explanation for the code in Project 10 using pseudo-code

The C Programming Language

// Project 10 - Serial controlled RGB Lamp
char buffer[18];
int red, green, blue;
int RedPin = 11;
int GreenPin = 10;
int BluePin = 9;

void setup()
{
 Serial.begin(9600);
 Serial.flush();
 pinMode(RedPin, OUTPUT);
 pinMode(GreenPin, OUTPUT);
 pinMode(BluePin, OUTPUT);
}

void loop()
{

 if (Serial.available() > 0) {
 int index=0;
 delay(100); // let the buffer fill up
 int numChar = Serial.available();
 if (numChar>15) {
 numChar=15;
 }
 while (numChar--) {
 buffer[index++] = Serial.read();
 }
 splitString(buffer);
 }
}

void splitString(char* data) {
 Serial.print("Data entered: ");
 Serial.println(data);
 char* parameter;
 parameter = strtok (data, " ,");
 while (parameter != NULL) {
 setLED(parameter);
 parameter = strtok (NULL, " ,");
 }

 // Clear the text and serial buffers
 for (int x=0; x<16; x++) {
 buffer[x]='\0';
 }
 Serial.flush();
}

Pseudo-Code

A comment with the project number and name
Declare a character array of 18 letters
Declare 3 integers called red, green and blue
An integer assigning a certain pin to the Red
LED
An integer assigning a certain pin to the Green
LED
An integer assigning a certain pin to the Blue
LED

The setup function

Set serial comms to run at 9600 chars per
second
Flush the serial line
Set the red led pin to be an output pin
Same for green
And blue

The main program loop

If data is sent down the serial line...
Declare integer called index and set to 0
Wait 100 millseconds
Set numChar to the incoming data from serial
If numchar is greater than 15 characters...
 Make it 15 and no more

While numChar is not zero (subtract 1 from it)
Set element[index] to value read in (add 1)

Call splitString function and send it data in
buffer

The splitstring function references buffer data
Print “Data entered: “
Print value of data and then drop down a line
Declare char data type parameter
Set it to text up to the first space or comma
While contents of parameter are not empty..

Call the setLED function
Set parameter to next part of text string

Another comment
Do the next line 16 times

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

void setLED(char* data) {
 if ((data[0] == 'r') || (data[0] == 'R')) {
 int Ans = strtol(data+1, NULL, 10);
 Ans = constrain(Ans,0,255);
 analogWrite(RedPin, Ans);
 Serial.print("Red is set to: ");
 Serial.println(Ans);
 }
 if ((data[0] == 'g') || (data[0] == 'G')) {
 int Ans = strtol(data+1, NULL, 10);
 Ans = constrain(Ans,0,255);
 analogWrite(GreenPin, Ans);
 Serial.print("Green is set to: ");
 Serial.println(Ans);
 }
 if ((data[0] == 'b') || (data[0] == 'B')) {
 int Ans = strtol(data+1, NULL, 10);
 Ans = constrain(Ans,0,255);
 analogWrite(BluePin, Ans);
 Serial.print("Blue is set to: ");
 Serial.println(Ans);
 }
}

Set each element of buffer to NULL (empty)

Flush the serial comms

A function called setLED is passed buffer
If first letter is r or R...
Set integer Ans to number in next part of text
Make sure it is between o and 255
Write that value out to the red pin
Print out “Red is set to: “
And then the value of Ans

If first letter is g or G...
Set integer Ans to number in next part of text
Make sure it is between o and 255
Write that value out to the green pin
Print out “Green is set to: “
And then the value of Ans

If first letter is b or B...
Set integer Ans to number in next part of text
Make sure it is between o and 255
Write that value out to the blue pin
Print out “Blue is set to: “
And then the value of Ans

Hopefully, the pseudo-code will help you understand exactly what is going on within the code.

Summary
Chapter 3 introduced many new commands and concepts in programming. You’ve learned about arrays
and how to use them, how to read analog values from a pin, how to use PWM pins, and the basics of
serial communications. Knowing how to send and read data across a serial line means you can use your
Arduino to communicate with all kinds of serial devices and other devices with simple communication
protocols. You will revisit serial communications later in this book.

Subjects and concepts covered in Chapter 3:

• Arrays and how to use them

• What a potentiometer (or variable resistor) is and how to use it

• Reading voltage values from an analog input pin

• How to use the mathematical sine (sin) function

• Converting degrees to radians

• The concept of casting a variable to a different type

• Pulse Width Modulation (PWM) and how to use it with analogWrite()

• Creating colored lights using different RGB values

• Generating random numbers using random() and randomSeed()

• How various lighting effects can be generated with the same circuit but different
code

• The concept of serial communications

• Setting the serial baud rate using Serial.begin()

• Sending commands using the Serial Monitor

• Using an array to create text strings

• Flushing the serial buffer using Serial.flush

• Checking if data is sent over the serial line using Serial.available

• Creating a loop while a condition is met with the while() command

• Reading data from the serial line using Serial.read()

• The basic concept of pointers

• Sending data to the Serial Monitor using Serial.print() or Serial.println()

• Manipulating text strings using the strtok() function

• Converting a string to a long integer using strtol()

• Constraining a variables value using the constrain() function

■ ■ ■

Simple Sounders and Sensors

This chapter is going to get noisy. You’re going to attach a piezo sounder to your Arduino in order to add
alarms, warning beeps, alert notifications, etc. to the device you are creating. As of version 0018 of the
Arduino IDE, tones can be added easily thanks to a new command. You will also find out how to use the
piezo as a sensor and learn how to read voltages from it. Finally, you’ll learn about light sensors.

Let’s start with a simple car alarm and the tone() command to make sounds from your Arduino.

Project 11 – Piezo Sounder Alarm
By connecting a piezo sounder to a digital output pin, you can create a wailing alarm sound. It’s the
same principle that you used in Project 7 when creating a pulsating lamp via a sine wave, but this time
you replace the LED with a piezo sounder or piezo disc.

Parts Required

Piezo Sounder (or piezo disc)

Connect It Up
First, make sure your Arduino is powered off by unplugging it from the USB cable. Now take the piezo
sounder and screw its wires into the screw terminal. Connect the screw terminal to the breadboard and
then connect it to the Arduino, as in Figure 4-1. Now, connect your Arduino back to the USB cable and
power it up.

Figure 4-1. The circuit for Project 11 – Piezo Sounder Alarm (see insert for color version)

Enter the Code
Open up your Arduino IDE and type in the code from Listing 4-1.

Listing 4-1. Code for Project 11

// Project 11 - Piezo Sounder Alarm

float sinVal;
int toneVal;

void setup() {
 pinMode(8, OUTPUT);
}

void loop() {
 for (int x=0; x<180; x++) {
 // convert degrees to radians then obtain sin value
 sinVal = (sin(x*(3.1412/180)));
 // generate a frequency from the sin value
 toneVal = 2000+(int(sinVal*1000));
 tone(8, toneVal);
 delay(2);
 }
}

After you upload the code, there will be a slight delay and then your piezo will start emitting sounds.

If everything is working as planned, you’ll hear a rising and falling siren type alarm, similar to a car
alarm. The code for Project 11 is almost identical to the code for Project 7; let’s see how it works.

Project 11 – Piezo Sounder Alarm – Code Overview
First, you set up two variables:

float sinVal;
int toneVal;

The sinVal float variable holds the sin value that causes the tone to rise and fall in the same way that

the lamp in Project 7 pulsated. The toneVal variable takes the value in sinVal and converts it to the
frequency you require.

In the setup function, you set Digital Pin 8 to an output:

void setup() {
 pinMode(8, OUTPUT);
}

In the main loop, you set a for loop to run from 0 to 179 to ensure that the sin value does not go into

the negative (as you did in Project 7):

for (int x=0; x<180; x++) {

You convert the value of x into radians (again, as in Project 7):

sinVal = (sin(x*(3.1412/180)));

Then that value is converted into a frequency suitable for the alarm sound:

toneVal = 2000+(int(sinVal*1000));

You take 2000 and add the sinVal multiplied by 1000. This supplies a good range of frequencies for

the rising and falling tone of the sine wave.
Next, you use the tone() command to generate the frequency at the piezo sounder:

tone(8, toneVal);

The tone() command requires either two or three parameters, thus:

tone(pin, frequency)
tone(pin, frequency, duration)

The pin is the digital pin being used to output to the piezo and the frequency is the frequency of the

tone in hertz. There is also the optional duration parameter in milliseconds for the length of the tone. If
no duration is specified, the tone will keep on playing until you play a different tone or you use the
noTone(pin) command to cease the tone generation on the specified pin.

Finally, you run a delay of 2 milliseconds between the frequency changes to ensure the sine wave
rises and falls at the speed you require:

delay(2);

If you are wondering why you didn’t put the 2 milliseconds into the duration parameter of the
tone() command like this

tone(8, toneVal, 2);

it’s because the for loop is so short that it will change the frequency in less than 2 milliseconds anyway,
thus rendering the duration parameter useless. Therefore, a delay of 2 milliseconds is put in after the
tone is generated to ensure that it plays for at least 2 milliseconds before the for loop repeats and the
tone changes again.

You could use this alarm generation principle later when you learn how to connect sensors to your
Arduino. Then you could activate an alarm when a sensor threshold has been reached, such as if
someone gets too close to an ultrasonic detector or if a temperature gets too high.

If you change the values of 2000 and 1000 in the toneVal calculation and the length of the delay, you
can generate different alarm sounds. Have some fun and see what sounds you can make!

Project 11 – Piezo Sounder Alarm – Hardware Overview
There are two new components in this project: a screw terminal and a piezo sounder. You use the screw
terminal because the wires from your piezo sounder or disc are too thin and soft to insert into the
breadboard. The screw terminal has pins on it that allow you to push it into a breadboard.

The piezo sounder or piezo disc (see Figure 4-2) is a simple device made up of a thin layer of
ceramic bonded to a metallic disc.

Figure 4-2. A piezo disc and Arduino (Image courtesy of Patrick H. Lauke/splintered.co.uk)

Piezoelectric materials, which are made up of crystals and ceramics, have the ability to produce
electricity when mechanical stress is applied to them. The effect finds useful applications such as the
production and detection of sound, generation of high voltages, electronic frequency generation,
microbalances, and ultra fine focusing of optical assemblies.

The effect is also reversible; if an electric field is applied across the piezoelectric material, it will
cause the material to change shape (by as much as 0.1 percent in some cases).

To produce sounds from a piezo disc, an electric field is turned on and off very fast to make the
material change shape; this causes an audible “click” as the disc pops out and back in again (like a tiny
drum). By changing the frequency of the pulses, the disc will deform hundreds or thousands of times per
second, causing the buzzing sound. By changing the frequency of the clicks and the time in between
them, specific notes can be produced.

You can also use the piezo’s ability to produce an electric field to measure movement or vibrations.
In fact, piezo discs are used as contact microphones for guitars or drum kits. You will use this feature of a
piezo disc in Project 13 when you make a knock sensor.

Project 12 – Piezo Sounder Melody Player
Rather than using the piezo to make annoying alarm sounds, why not use it to play a melody? You are
going to get your Arduino to play the chorus of “Puff the Magic Dragon.” Leave the circuit exactly the
same as in Project 11; you are just changing the code.

Enter the Code
Open up your Arduino IDE and type in the code from Listing 4-2.

Listing 4-2. Code for Project 12

// Project 12 - Piezo Sounder Melody Player

#define NOTE_C3 131
#define NOTE_CS3 139
#define NOTE_D3 147
#define NOTE_DS3 156
#define NOTE_E3 165
#define NOTE_F3 175
#define NOTE_FS3 185
#define NOTE_G3 196
#define NOTE_GS3 208
#define NOTE_A3 220
#define NOTE_AS3 233
#define NOTE_B3 247
#define NOTE_C4 262
#define NOTE_CS4 277
#define NOTE_D4 294
#define NOTE_DS4 311
#define NOTE_E4 330
#define NOTE_F4 349
#define NOTE_FS4 370
#define NOTE_G4 392
#define NOTE_GS4 415

#define NOTE_A4 440
#define NOTE_AS4 466
#define NOTE_B4 494

#define WHOLE 1
#define HALF 0.5
#define QUARTER 0.25
#define EIGHTH 0.125
#define SIXTEENTH 0.0625

int tune[] = { NOTE_C4, NOTE_C4, NOTE_C4, NOTE_C4, NOTE_C4, NOTE_B3, NOTE_G3, NOTE_A3,
 NOTE_C4, NOTE_C4, NOTE_G3, NOTE_G3, NOTE_F3, NOTE_F3, NOTE_G3, NOTE_F3, NOTE_E3, NOTE_G3,
 NOTE_C4, NOTE_C4, NOTE_C4, NOTE_C4, NOTE_A3, NOTE_B3, NOTE_C4, NOTE_D4};

float duration[] = { EIGHTH, QUARTER+EIGHTH, SIXTEENTH, QUARTER, QUARTER, HALF, HALF,
 HALF, QUARTER, QUARTER, HALF+QUARTER, QUARTER, QUARTER, QUARTER, QUARTER+EIGHTH, EIGHTH,
 QUARTER, QUARTER, QUARTER, EIGHTH, EIGHTH, QUARTER, QUARTER, QUARTER, QUARTER,
 HALF+QUARTER};

int length;

void setup() {
 pinMode(8, OUTPUT);
 length = sizeof(tune) / sizeof(tune[0]);
}

void loop() {
 for (int x=0; x<length; x++) {
 tone(8, tune[x]);
 delay(1500 * duration[x]);
 noTone(8);
 }
 delay(5000);
}

After you upload the code, there will be a slight delay and then your piezo will start to play a tune.

Hopefully you will recognize it as part of the chorus of “Puff the Magic Dragon.” Now, let’s look at the
new concepts from this project.

Project 12 – Piezo Sounder Melody Player – Code Overview
The first thing you see when looking at the code for Project 12 is the long list of define directives. The
define directive is very simple and very useful. #define simply defines a value and its token. For example,

#define PI 3.14159265358979323846264338327950288419716939937510

will allow you to substitute PI in any calculation instead of having to type out pi to 50 decimal places.
Another example,

#define TRUE 1
#define FALSE 0

means that you can put a TRUE or FALSE into your code instead of a 0 or a 1. This makes logical
statements easier for a human to read.

Let’s say that you wrote some code to display shapes on an LED dot matrix display and the
resolution of the display was 8 x 32. You could create define directives for the height and width of the
display thus:

#define DISPLAY_HEIGHT 8
#define DISPLAY_WIDTH 32

Now, whenever you refer to the height and width of the display in your code you can put

DISPLAY_HEIGHT and DISPLAY_WIDTH instead of the numbers 8 and 32.
There are two main advantages to doing this instead of simply using the numbers. Firstly, the code

becomes a lot easier to understand as you have changed the height and width values of the display into
tokens that make these numbers clearer to a third party. Secondly, if you change your display at a later
date to a larger resolution, say a 16 64 display, all you need to do is changed the two values in the
define directives instead of having to change numbers in what could be hundreds of lines of code. By
changing the values in the define directive at the start of the program the new values are automatically
used throughout the rest of the code.

In Project 12, you create a whole set of define directives where the tokens are the notes C3 through
to B4 and the values are the frequencies required to create that note. The first note of your melody is C4
and its corresponding frequency is 262 Hz. This is middle C on the musical scale. (Not all of the notes
defined are used in your melody, but I have included them in case you wish to write your own tune.)

The next five define directives are for the note lengths. The notes can be a whole bar, half, quarter,
eighth, or a sixteenth of a bar in length. The numbers are what we will use to multiply the length of the
bar in milliseconds to get the length of each note. For example, a quarter note is 0.25 (or one quarter of
one); therefore, multiply the length of the bar (in this case, 1500 milliseconds) by 0.25 to get the length of
a quarter note:

1500 QUARTER = 375 milliseconds

Define directives can also be used for creating macros; more on macros in a later chapter.
Next, you define an integer array called tune[] and fill it with the notes for “Puff the Magic Dragon”

like so:

int tune[] = { NOTE_C4, NOTE_C4, NOTE_C4, NOTE_C4, NOTE_C4, NOTE_B3, NOTE_G3, NOTE_A3,
 NOTE_C4, NOTE_C4, NOTE_G3, NOTE_G3, NOTE_F3, NOTE_F3, NOTE_G3, NOTE_F3, NOTE_E3, NOTE_G3,
 NOTE_C4, NOTE_C4, NOTE_C4, NOTE_C4, NOTE_A3, NOTE_B3, NOTE_C4, NOTE_D4};

After that, you create another array, a float that will hold the duration of the each note as it is played:

float duration[] = { EIGHTH, QUARTER+EIGHTH, SIXTEENTH, QUARTER, QUARTER, HALF, HALF,
 HALF, QUARTER, QUARTER, HALF+QUARTER, QUARTER, QUARTER, QUARTER, QUARTER+EIGHTH, EIGHTH,
 QUARTER, QUARTER, QUARTER, EIGHTH, EIGHTH, QUARTER, QUARTER, QUARTER, QUARTER,
 HALF+QUARTER};

As you can see by looking at these arrays, the use of the define directives to define the notes and the
note lengths makes reading and understanding the array a lot easier than if it were filled with a series of
numbers. You then create an integer called length

int length;

which will be used to calculate and store the length of the array (i.e. the number of notes in the tune).
In your setup routine, you set Digital Pin 8 to an output

pinMode(8, OUTPUT);

then initialize the integer length with the number of notes in the array using the sizeof() function:

length = sizeof(tune) / sizeof(tune[0]);

The sizeof function returns the number of bytes in the parameter passed to it. On the Arduino, an
integer is made up of two bytes. A byte is made up of 8 bits. (This is delving into the realm of binary
arithmetic and for this project you do not need to worry about bits and bytes. You will come across them
later in the book and all will be explained.) Your tune just happens to have 26 notes in it, so the tunes[]
array has 26 elements. To calculate that we get the size (in bytes) of the entire array

sizeof(tune)

and divide that by the number of bytes in a single element

sizeof(tune[0])

which, in this case, this is equivalent to

26 / 2 = 13

If you replace the tune in the project with one of your own, length will be calculated as the number
of notes in your tune.

The sizeof() function is useful in working out the lengths of different data types and is particularly
useful if you were to port your code over to another device where the length of the datatypes may differ
from those on the Arduino.

In the main loop, you set up a for loop that iterates the number of times there are notes in the
melody

for (int x=0; x<length; x++) {

then play the next note in the tune[] array on Digital Pin 8

tone(8, tune[x]);

then wait the appropriate amount of time to let the note play

delay(1500 * duration[x]);

The delay is 1500 milliseconds multiplied by the note length (0.25 for a quarter note, 0.125 for an
eighth note, etc.).

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Before the next note is played you cease the tone generated on Digital Pin 8:

noTone(8);

This is to ensure that when two identical notes are played back to back they can be distinguished as

individual notes. Without the noTone() function, the notes would merge into one long note instead.
Finally, after the for loop is complete, you run a delay of 5 seconds before repeating the melody over

again:

delay(5000);

To create the notes for this tune, I found some public domain sheet music for “Puff the Magic

Dragon” on the Internet and typed the notes into the tune[] array, followed by the note lengths in the
duration[] array. Note that I have added note lengths to get dotted notes (e.g. QUARTER+EIGHTH). By doing
something similar you can create any tune you want.

If you wish to speed up or slow down the pace of the tune, change the value of 1500 in the delay
function to something higher or lower.

You can also replace the piezo in the circuit with a speaker or headphones, as long as you put a
resistor in series with it to ensure that the maximum current for the speaker is not exceeded.

You are going to use the piezo disc for another purpose—its ability to produce a current when the
disc is squeezed or knocked. Utilizing this feature, you are going to make a Knock Sensor in Project 13.

Project 13 – Piezo Knock Sensor
A piezo disc works when an electric current is passed over the ceramic material in the disc, causing it to
change shape and hence make a sound (a click). The disc also works in reverse: when the disc is knocked
or squeezed, the force on the material causes the generation of an electric current. You can read that
current using the Arduino and you are going to do that now by making a Knock Sensor.

Parts Required

Piezo Sounder (or piezo disc)

5mm LED (any color)

1MΩ Resistor

Connect It Up
First, make sure your Arduino is powered off by unplugging it from the USB cable. Then connect up your
parts so you have the circuit in Figure 4-3. Note that a piezo disc works better for this project than a
piezo sounder.

Figure 4-3. The circuit for Project 13 – Piezo Knock Sensor (see insert for color version)

Enter the Code
Open up your Arduino IDE and type in the code from Listing 4-3.

Listing 4-3. Code for Project 13

// Project 13 - Piezo Knock Sensor

int ledPin = 9; // LED on Digital Pin 9
int piezoPin = 5; // Piezo on Analog Pin 5
int threshold = 120; // The sensor value to reach before activation
int sensorValue = 0; // A variable to store the value read from the sensor
float ledValue = 0; // The brightness of the LED

void setup() {
 pinMode(ledPin, OUTPUT); // Set the ledPin to an OUTPUT
 // Flash the LED twice to show the program has started
 digitalWrite(ledPin, HIGH); delay(150); digitalWrite(ledPin, LOW); delay(150);
 digitalWrite(ledPin, HIGH); delay(150); digitalWrite(ledPin, LOW); delay(150);
}

void loop() {
 sensorValue = analogRead(piezoPin); // Read the value from the sensor
 if (sensorValue >= threshold) { // If knock detected set brightness to max
 ledValue = 255;
 }
 analogWrite(ledPin, int(ledValue)); // Write brightness value to LED
 ledValue = ledValue - 0.05; // Dim the LED slowly
 if (ledValue <= 0) { ledValue = 0;} // Make sure value does not go below zero
}

After you have uploaded your code, the LED will flash quickly twice to indicate that the program has

started. You can now knock the sensor (place it flat on a surface first) or squeeze it between your fingers.
Every time the Arduino detects a knock or squeeze, the LED will light up and then gently fade back down
to off. (Note that the threshold value in the code was set for the specific piezo disc I used when building
the project. You may need to set this to a higher or lower value depending on the type and size of piezo
you have used for your project. Lower is more sensitive and higher is less.)

Project 13 – Piezo Knock Sensor – Code Overview
There aren’t any new code commands in this project, but I’ll go over how it works anyway.

First, set up the necessary variables for your program; these are self explanatory:

int ledPin = 9; // LED on Digital Pin 9
int piezoPin = 5; // Piezo on Analog Pin 5
int threshold = 120; // The sensor value to reach before activation
int sensorValue = 0; // A variable to store the value read from the sensor
float ledValue = 0; // The brightness of the LED

In the setup function, the ledPin is set to an output and, as noted, the LED is flashed quickly twice as

a visual indication that the program has started working:

void setup() {
 pinMode(ledPin, OUTPUT);
 digitalWrite(ledPin, HIGH); delay(150); digitalWrite(ledPin, LOW); delay(150);
 digitalWrite(ledPin, HIGH); delay(150); digitalWrite(ledPin, LOW); delay(150);
}

In the main loop, you first read the analog value from Analog Pin 5, which the piezo is attached to:

sensorValue = analogRead(piezoPin);

Then the code checks if that value is greater than or equal to (>=) the threshold you have set, i.e. if it

really is a knock or squeeze. (The piezo is very sensitive as you will see if you set the threshold to a very
low value). If yes, then it sets ledValue to 255, which is the maximum voltage out of Digital PWM Pin 9:

if (sensorValue >= threshold) {
 ledValue = 255;
}

You then write that value to Digital PWM Pin 9. Because ledValue is a float, you cast it to an integer,
as the analogWrite function can only accept an integer and not a floating value

analogWrite(ledPin, int(ledValue));

and then reduce the value of ledValue, which is a float, by 0.05

ledValue = ledValue - 0.05;

You want the LED to dim gently, hence you use a float instead of an integer to store the brightness

value of the LED. This way you can deduct its value by a small amount (in this case 0.05), so it will take a
little while as the main loop repeats for the value of ledValue to reach zero. If you want the LED to dim
slower or faster, increase or decrease this value.

Finally, you don’t want ledValue to go below zero as Digital PWM Pin 9 can only output a value from
0 to 255, so you check if it is smaller or equal to zero, and if so, change it back to zero:

if (ledValue <= 0) { ledValue = 0;}

The main loop then repeats, dimming the LED slightly each time until the LED goes off or another

knock is detected and the brightness is set back to maximum.
Now let’s introduce a new sensor, the Light Dependent Resistor or LDR.

Project 14 – Light Sensor
This project introduces a new component known as a Light Dependent Resistor, or LDR. As the name
implies, the device is a resistor that depends on light. In a dark environment, the resistor has a very high
resistance. As photons (light) land on the detector, the resistance decreases. The more light, the lower
the resistance. By reading the value from the sensor, you can detect if it is light, dark, or anywhere
between. In this project, you use an LDR to detect light and a piezo sounder to give audible feedback of
the amount of light detected.

This setup could be used as an alarm that indicates when a door has been opened, for example.
Alternatively, you could use it to create a musical instrument similar to a theremin.

Parts Required

Piezo Sounder (or piezo disc)

Light Dependent Resistor

10kΩ Resistor

Connect It Up
First, make sure your Arduino is powered off by unplugging it from the USB cable. Then connect up your
parts so you have the circuit shown in Figure 4-3. Check all of your connections before reconnecting the
power to the Arduino.

Figure 4-4. The circuit for Project 14 – Light Sensor (see insert for color version)

The LDR can be inserted any way because it does not have polarity. I found a 10kΩ resistor worked
well for my LDR but you may need to try different resistor settings until you find one suitable for your
LDR. A value between 1kΩ and 10kΩ should do the trick. Having a selection of different common resistor
values in your component box will always come in handy.

Enter the Code
Now fire up your Arduino IDE and enter the short and simple code in Listing 4-4.

Listing 4-4. Code for Project 13

// Project 14 - Light Sensor

int piezoPin = 8; // Piezo on Pin 8
int ldrPin = 0; // LDR on Analog Pin 0
int ldrValue = 0; // Value read from the LDR

void setup() {
 // nothing to do here
}

void loop() {
 ldrValue = analogRead(ldrPin); // read the value from the LDR
 tone(piezoPin,1000); // play a 1000Hz tone from the piezo
 delay(25); // wait a bit
 noTone(piezoPin); // stop the tone
 delay(ldrValue); // wait the amount of milliseconds in ldrValue
}

When you upload this code to the Arduino, the Arduino makes short beeps. The gap between the

beeps will be long if the LDR is in the shade and will be short if bright light shines on the LDR, giving it a
Geiger counter type effect. You may find it more practical to solder a set of long wires to the LDR to allow
you to keep your breadboard and Arduino on the table while moving the LDR around to point it at dark
and light areas. Alternatively, shine a flashlight on the sensor and move it around.

The code for Project 14 is very simple and you should be able to work out how it works yourself
without any help. I will, however, show you how an LDR works and why the additional resistor is
important.

Project 14 – Light Sensor – Hardware Overview
The new component in this project is a Light Dependent Resistor (LDR), otherwise known as a CdS
(Cadmium-Sulfide) or a photoresistor. LDRs come in and shapes and sizes (see Figure 4-5) and in
different ranges of resistance.

Figure 4-5. Different kinds of LDR (image by cultured_society2nd)

Each of the legs on the LDR goes to an electrode. Between a darker material, making a squiggly line
between the electrodes, is the photoconductive material. The component has a transparent plastic or
glass coating. When light hits the photoconductive material, it loses its resistance, allowing more current
to flow between the electrodes. LDRs can be used in all kinds of interesting projects; for example, you
could fire a laser into an LDR and detect when a person breaks the beam, triggering an alarm or a shutter
on a camera.

The next new concept in your circuit is a voltage divider (also known as a potential divider). This is
where the resistor comes in. By using two resistors and taking the voltage across just one of them you
can reduce the voltage going into the circuit. In your case, you have a resistor of a fixed value (10kΩ or
thereabouts) and variable resistor in the form of a LDR. Let’s take a look at a standard voltage divider
circuit using resistors and see how it works. Figure 4-6 shows a voltage divider using two resistors.

Figure 4-6. A voltage divider

The voltage in (Vin) is connected across both resistors. When you measure the voltage across one of
the resistors (Vout) it will be less (divided). The formula for working out what the voltage at Vout comes
out when measured across R2 is:

 R2
Vout = ⎯⎯⎯⎯ Vin
 R2 + R1

So, if you have 100Ω resistors (or 0.1kΩ) for both R1 and R2 and 5v going into Vin, your formula is:

 0.1 ⎯⎯⎯⎯ 5 = 2.5 volts
 0.1 + 0.1

Let’s do it again with 470Ω resistors:

 0.47 ⎯⎯⎯⎯⎯ 5 = 2.5 volts
0.47 + 0.47

Again, you get 2.5 volts. This demonstrates that the value of the resistors is not important, but the
ratio between them is. Let’s try a 1kΩ and a 500Ω resistor:

 0.5 ⎯⎯⎯ 5 = 1.66 volts
0.5 + 1

With the bottom resistor half the value of the top one, you get 1.66 volts, which is a third of the
voltage going in. Let’s make the bottom resistor twice the value of the top at 2kΩ

 2 ⎯⎯ 5 = 3.33 volts
2 + 1

which is two-thirds of the voltage going in. So, let’s apply this to the LDR. You can presume that the LDR
has a range of around 10kΩ when in the dark and 1kΩ in bright light. Table 4-1 shows what voltages you
will get out of your circuit as the resistance changes.

Table 4-1. Vout values for a LDR with 5v as Vin

R1 R2 (LDR) Vout Brightness

10kΩ 100kΩ 4.54v Dark est

10kΩ 73kΩ 4.39v 25%

10kΩ 45kΩ 4.09v 50%

10kΩ 28kΩ 3.68v 75%

10kΩ 10kΩ 2.5v Bri ghtest

As you can see, as the brightness increases, the voltage at Vout decreases. As a result, the value you

read at the sensor gets less and the delay after the beep gets shorter, causing the beeps to occur more
frequently. If you were to switch the resistor and LDR, the voltage would increase as more light fell onto
the LDR. Either way will work; it just depends how you want your sensor to be read.

Summary
In Chapter 6, you learned how to make music, alarm sounds, warning beeps, etc, from your Arduino.
These sounds have many useful applications. You can, for example, make your own alarm clock. By
using a piezo sounder in reverse to detect voltages from it and use that effect to detect a knock or
pressure on the disc, you can make a musical instrument. Finally, by using an LDR to detect light, you
can turn on a night light when ambient light falls below a certain threshold.

Subjects and Concepts covered in Chapter 4:
• What a piezoelectric transducer is and how it works

• How to create sounds using the tone() function

• How to stop tone generation using the noTone() function

• The #define command and how it makes code easier to debug and understand

• Obtaining the size of an array (in bytes) using the sizeof() function

• What an LDR (Light Dependent Resistor) is, how it works, and how to read values
from it

• The concept of voltage dividers and how to use them

■ ■ ■

Liquid Crystal Displays

Let’s investigate another popular method of displaying text and symbols, the LCD (Liquid Crystal
Display). LCDs are the displays typically used in calculators and alarm clocks. Many Arduino projects
involve LCDs, so it’s essential that you know how to use them. LCD displays require driver chips to
control them; these are built into the display. The most popular type of driver chip is the Hitachi
HD44780 (or compatible).

Creating projects based around LCD displays is nice and easy thanks to an array of readily available
LCD code libraries. The Arduino IDE comes with a library called LiquidCrystal.h that has a great list of
features. You will be using this one in your projects.

Project 23 – Basic LCD Control
To start with, you will create a demonstration project that will show off most of the functions available in
the LiquidCrystal.h library. To do so, you’ll use a backlit 162 LCD Display.

Parts Required
You need to obtain an LCD Display that uses the HD44780 driver. There are many available and they
come in all kinds of colors. As an amateur astronomer, I particularly like the red on black displays (red
text on a black background) because they preserve your night vision if used in astronomy based projects.
You can choose another color text and background but your display must have a backlight and be able to
display sixteen columns and two rows of characters (often referred to as 162 LCD displays).

162 Backlit LCD

Current Limiting Resistor (Backlight)

Current Limiting Resistor (Contrast)

Connect It Up
The circuit for Project 23 is quite simple. Find the datasheet for the LCD you are using. The following
pins (see Table 8-1) from the Arduino, +5v, and Ground need to go to the LCD.

Table 8-1. Pins to use for the LCD

Arduino Other Matrix

Digital 11 Enable

Digital 12 RS (Register Select)

Digital 5 DB4 (Data Pin 4)

Digital 4 DB5 (Data Pin 5)

Digital 3 DB6 (Data Pin 6)

Digital 2 DB7 (Data Pin 7)

 Gnd Vss (GND)

 Gnd R/W (Read/Write)

 +5v Vdd

 +5v via resistor Vo (Contrast)

 +5v via resistor A/Vee (Power for LED)

 Gnd Gnd for LED

Data Pins 0 to 3 are not used because you are going to use what is known as 4-bit mode. For a typical

LCD display the circuit in Figure 8-1 will be correct.

Figure 8-1. The circuit for Project 23 – Basic LCD Control (see insert for color version)

The contract adjustment pin on the LCD must be connected via a current limiting resistor in order
to adjust the contrast the desired level. A value of around 10K ohm should suffice. If you find it difficult
to get the right value, then connect a potentiometer (with value between about 4K ohm to 10K ohm) with
the left leg to +5v, the right leg to ground, and the center leg to the contrast adjustment pin (Pin 3 on my
test LCD). Now you can use the knob to adjust the contrast until you can see the display clearly.

The backlight on my test LCD required 4.2v, so I added the appropriate current limiting resistor
between +5v and the LED power supply pin (Pin 15 on my LCD). You could connect the LED power pin
to a PWM pin on the Arduino and use a PWM output to control the brightness of the backlight, but for
simplicity’s sake you won’t use this method in this project. Once you’re happy that you have the correct
pins going between the Arduino, +5v, and Ground (according to the LCDs datasheet), you can enter the
code

Enter The Code
Check your wiring, then upload the code from Listing 8-1.

Listing 8-1. Code for Project 23

// PROJECT 23
#include <LiquidCrystal.h>

// Initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // Create an lcd object and assign the pins

174

void setup() {
 lcd.begin(16, 2); // Set the display to 16 columns and 2 rows
}

void loop() {
 // Run the seven demo routines
 basicPrintDemo();
 displayOnOffDemo();
 setCursorDemo();
 scrollLeftDemo();
 scrollRightDemo();
 cursorDemo();
 createGlyphDemo();
}

void basicPrintDemo() {
 lcd.clear(); // Clear the display
 lcd.print("Basic Print"); // Print some text
 delay(2000);
}

void displayOnOffDemo() {
 lcd.clear(); // Clear the display
 lcd.print("Display On/Off"); // Print some text
 for(int x=0; x < 3; x++) { // Loop 3 times
 lcd.noDisplay(); // Turn display off
 delay(1000);
 lcd.display(); // Turn it back on again
 delay(1000);
 }
}

void setCursorDemo() {
 lcd.clear(); // Clear the display
 lcd.print("SetCursor Demo"); // Print some text
 delay(1000);
 lcd.clear(); // Clear the display
 lcd.setCursor(5,0); // Cursor at column 5 row 0
 lcd.print("5,0");
 delay(2000);
 lcd.setCursor(10,1); // Cursor at column 10 row 1
 lcd.print("10,1");
 delay(2000);
 lcd.setCursor(3,1); // Cursor at column 3 row 1
 lcd.print("3,1");
 delay(2000);
}

void scrollLeftDemo() {
 lcd.clear(); // Clear the display
 lcd.print("Scroll Left Demo");
 delay(1000);
 lcd.clear(); // Clear the display
 lcd.setCursor(7,0);
 lcd.print("Beginning");
 lcd.setCursor(9,1);
 lcd.print("Arduino");
 delay(1000);
 for(int x=0; x<16; x++) {
 lcd.scrollDisplayLeft(); // Scroll display left 16 times
 delay(250);
 }
}

void scrollRightDemo() {
 lcd.clear(); // Clear the display
 lcd.print("Scroll Right");
 lcd.setCursor(0,1);
 lcd.print("Demo");
 delay(1000);
 lcd.clear(); // Clear the display
 lcd.print("Beginning");
 lcd.setCursor(0,1);
 lcd.print("Arduino");
 delay(1000);
 for(int x=0; x<16; x++) {
 lcd.scrollDisplayRight(); // Scroll display right 16 times
 delay(250);
 }
}

void cursorDemo() {
 lcd.clear(); // Clear the display
 lcd.cursor(); // Enable cursor visible
 lcd.print("Cursor On");
 delay(3000);
 lcd.clear(); // Clear the display
 lcd.noCursor(); // Cursor invisible
 lcd.print("Cursor Off");
 delay(3000);
 lcd.clear(); // Clear the display
 lcd.cursor(); // Cursor visible
 lcd.blink(); // Cursor blinking
 lcd.print("Cursor Blink On");
 delay(3000);
 lcd.noCursor(); // Cursor invisible
 lcd.noBlink(); // Blink off
}

void createGlyphDemo() {
 lcd.clear();

 byte happy[8] = { // Create byte array with happy face
 B00000,
 B00000,
 B10001,
 B00000,
 B10001,
 B01110,
 B00000,
 B00000};

 byte sad[8] = { // Create byte array with sad face
 B00000,
 B00000,
 B10001,
 B00000,
 B01110,
 B10001,
 B00000,
 B00000};

 lcd.createChar(0, happy); // Create custom character 0
 lcd.createChar(1, sad); // Create custom character 1

 for(int x=0; x<5; x++) { // Loop animation 5 times
 lcd.setCursor(8,0);
 lcd.write(0); // Write custom char 0
 delay(1000);
 lcd.setCursor(8,0);
 lcd.write(1); // Write custom char 1
 delay(1000);
 }
}

Project 23 – Basic LCD Control – Code Overview
First you load in the library that you are going to use to control the LCD. There are many libraries and
code examples available for different types of LCDs; you can find them all on the Arduino playground at
www.arduino.cc/playground/Code/LCD. However, the Arduino IDE comes with a library called
LiquidCrystal.h that is easy to understand and use:

#include <LiquidCrystal.h>

Now you need to create and LiquidCrystal object and set the appropriate pins:

LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // Create an lcd object and assign the pins

http://www.arduino.cc/playground/Code/LCD

So you have created a LiquidCrystal object and called it lcd. The first two parameters set the pins for
RS (Register Select) and Enable. The last four parameters are Data Pins D4 to D7. As you are using 4-bit
mode, you are only using four of the eight data pins on the display.

The difference between 4-bit and 8-bit modes is that in 8-bit mode you can send data one byte at a
time whereas in 4-bit mode the 8 bits have to be split up into to 4-bit numbers (known as nibbles). This
makes the code larger and more complex. However, you are using a readymade library, so you don’t
need to worry about that. If, however, you were writing space- or time-critical code, you would consider
writing directly to the LCD in 8-bit mode. Using 4-bit mode has the advantage of saving four pins which
is useful if you want to connect other devices at the same time.

In the setup() loop you initialize the display to the size required, which is 16 columns and 2 rows:

lcd.begin(16, 2); // Set the display to 16 columns and 2 rows

The main program loop simply runs seven different demo routines, one by one, before restarting.

Each demo routine shows off one set of related routines in the LiquidCrystal.h library:

void loop() {
 // Run the seven demo routines
 basicPrintDemo();
 displayOnOffDemo();
 setCursorDemo();
 scrollLeftDemo();
 scrollRightDemo();
 cursorDemo();
 createGlyphDemo();
}

The first function is basicPrintDemo() and it is designed to show use of the .print() command. This

demo simply clears the display using lcd.clear() and then prints to the display using lcd.print(). Note
that if you had initialized your LiquidCrystal object and called it, for example, LCD1602, then these
commands would be LCD1602.clear() and LCD1602.print() accordingly. In other words, the command
comes after the name of the object, with a dot between them.

The print() command will print whatever is inside the brackets at the current cursor location. The
default cursor location is always column 0 and row 0, which is the top right corner. After clearing the
display, the cursor will be set to the default or home position.

void basicPrintDemo() {
 lcd.clear(); // Clear the display
 lcd.print("Basic Print"); // Print some text
 delay(2000);
}

The second function is designed to show off the display() and noDisplay() commands. These

commands simply enable or disable the display. The routine prints out “Display On/Off” and then runs
a loop three times to turn the display off, wait one second, turn it back on, wait another second, then
repeat. Whenever you turn the display off, whatever was printed on the screen before it went off will be
preserved when the display is re-enabled.

void displayOnOffDemo() {
 lcd.clear(); // Clear the display
 lcd.print("Display On/Off"); // Print some text
 for(int x=0; x < 3; x++) { // Loop 3 times
 lcd.noDisplay(); // Turn display off
 delay(1000);
 lcd.display(); // Turn it back on again
 delay(1000);
 }
}

The next function shows off the setCursor() command, which sets the cursor to the column and
row location set within the brackets. The demonstration sets the cursor to three locations and prints that
location in text on the display. The setCursor() command is useful for controlling the layout of your text
and ensuring that your output goes to the appropriate part of the display screen.

void setCursorDemo() {
 lcd.clear(); // Clear the display
 lcd.print("SetCursor Demo"); // Print some text
 delay(1000);
 lcd.clear(); // Clear the display
 lcd.setCursor(5,0); // Cursor at column 5 row 0
 lcd.print("5,0");
 delay(2000);
 lcd.setCursor(10,1); // Cursor at column 10 row 1
 lcd.print("10,1");
 delay(2000);
 lcd.setCursor(3,1); // Cursor at column 3 row 1
 lcd.print("3,1");
 delay(2000);
}

There are two commands in the library for scrolling text: scrollDisplayLeft() and
scrollDisplayRight(). Two demo routines show off these commands. The first prints “Beginning
Arduino” on the right side of the display and scrolls it left 16 times, which will make it scroll off the
screen:

void scrollLeftDemo() {
 lcd.clear(); // Clear the display
 lcd.print("Scroll Left Demo");
 delay(1000);
 lcd.clear(); // Clear the display
 lcd.setCursor(7,0);
 lcd.print("Beginning");
 lcd.setCursor(9,1);
 lcd.print("Arduino");
 delay(1000);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

 for(int x=0; x<16; x++) {
 lcd.scrollDisplayLeft(); // Scroll display left 16 times
 delay(250);
 }
}

The next function acts similarly, starting with the text on the left and scrolling it right 16 times till it

scrolls off the screen:

void scrollRightDemo() {
 lcd.clear(); // Clear the display
 lcd.print("Scroll Right");
 lcd.setCursor(0,1);
 lcd.print("Demo");
 delay(1000);
 lcd.clear(); // Clear the display
 lcd.print("Beginning");
 lcd.setCursor(0,1);
 lcd.print("Arduino");
 delay(1000);
 for(int x=0; x<16; x++) {
 lcd.scrollDisplayRight(); // Scroll display right 16 times
 delay(250);
 }
}

The cursor so far has been invisible—it’s always there but just not seen. Whenever you clear the

display, the cursor returns to the top left corner (column 0 and row 0). After printing some text, the
cursor will sit just after the last character printed. The next function clears the display, then turns the
cursor on with cursor() and prints some text. The cursor will be visible, just after this text, as an
underscore (_) symbol:

void cursorDemo() {
 lcd.clear(); // Clear the display
 lcd.cursor(); // Enable cursor visible
 lcd.print("Cursor On");
 delay(3000);

The display is cleared again. This time the cursor is turned off, which is the default mode, using

noCursor(). Now the cursor cannot be seen:

 lcd.clear(); // Clear the display
 lcd.noCursor(); // Cursor invisible
 lcd.print("Cursor Off");
 delay(3000);

Next, the cursor is enabled again. Blink mode is also enabled using blink():

 lcd.clear(); // Clear the display
 lcd.cursor(); // Cursor visible
 lcd.blink(); // Cursor blinking
 lcd.print("Cursor Blink On");
 delay(3000);

This time the cursor will not only be visible, but will be blinking on and off. This mode is useful if

you are waiting for some text input from a user. The blinking cursor will act as a prompt to enter some
text.

Finally, the cursor and blink are turned off to put the cursor back into the default mode:

 lcd.noCursor(); // Cursor invisible
 lcd.noBlink(); // Blink off
}

The final function called createGlyphDemo() creates a custom character. Most LCDs let you program

your own custom characters to them. The standard 162 LCD has space to store eight custom characters
in memory. The characters are 5 pixels wide by 8 pixels high (a pixel is a picture element, i.e. the
individual dots that make up a digital display). The display is cleared and then two arrays of type byte are
initialized with the binary pattern of a happy and a sad face. The binary patterns are 5 bits wide.

void createGlyphDemo() {
 lcd.clear();

 byte happy[8] = { // Create byte array with happy face
 B00000,
 B00000,
 B10001,
 B00000,
 B10001,
 B01110,
 B00000,
 B00000};

 byte sad[8] = { // Create byte array with sad face
 B00000,
 B00000,
 B10001,
 B00000,
 B01110,
 B10001,
 B00000,
 B00000};

Then you create the two custom characters using the createChar() command. This requires two

parameters: the first is the number of the custom character (0 to 7 in the case of my test LCD, which can
store a maximum of 8), and the second is the name of the array that creates and stores the custom
characters binary pattern in memory on the LCD:

 lcd.createChar(0, happy); // create custom character 0
 lcd.createChar(1, sad); // create custom character 1

A for loop will now loop through itself five times. On each iteration the cursor is set to column 8 and

row 0, and the first custom character is written to that location using the write() command. This writes
the custom character within the brackets to the cursor location. The first character, a happy face, is
written to the cursor location; after a delay of one second the second character, a sad face, is then written
to the same cursor location. This repeats five times to make a crude animation.

 for(int x=0; x<5; x++) { // loop animation 5 times
 lcd.setCursor(8,0);
 lcd.write(0); // write custom char 0
 delay(1000);
 lcd.setCursor(8,0);
 lcd.write(1); // write custom char 1
 delay(1000);
 }
}

Project 23 covered most of the popular commands within the LiquidCrystal.h library. There are

several others to discover, however, and you can read about them in the Arduino Reference library at
www.arduino.cc/en/Reference/LiquidCrystal.

Project 23 – Basic LCD Control – Hardware Overview
The new component in this project was obviously the LCD. A liquid crystal display works by using the
light modulating properties of liquid crystals. The display is made up of pixels, each one filled with liquid
crystals. These pixels are arrayed in front of a backlighting source or a reflector. The crystals are placed
into layers sandwiched between polarizing filters. The two polarizing panels are aligned at 90 degrees to
each other, which blocks light. The first polarizing filter will polarize the light waves so that they all run
in one orientation only. The second filter, being at 90 degrees to the first, will block the light. In other
words, imagine that the filter is made up of very thin slits going in one direction. Light polarized in one
direction will go through slits in the same orientation, but when it reaches the second filter, which has its
slits running the other way, it will not pass through. By running a current across the rows and columns of
the layers, the crystals can be made to change orientation and line up with the electric field. This causes
the light to twist 90 degrees, thus allowing it through the second filter. Hence, some displays are referred
to as “Super-Twist.”

The LCD is made up of a grid of pixels and these are arranged into smaller grids that make up the
characters. A typical 162 LCD will have 16 character grids in two rows. Each character grid is made up
of 5 pixels wide by 8 pixels high. If you turn the contrast up very high on your display, the 32 arrays of
57 pixels will become visible.

That is really all you need to know about how LCDs work. Let’s now put the LCD to use by making a
temperature display.

http://www.arduino.cc/en/Reference/LiquidCrystal

Project 24 – LCD Temperature Display
This project is a simple demonstration of using an LCD to present useful information to the user—in this
case, the temperature from an analog temperature sensor. You will add a button to switch between
displaying the in Celsius or Fahrenheit. Also, the maximum and minimum temperature will be displayed
on the second row.

Parts Required
The parts required are the same as for Project 23, plus a button and an analogue temperature sensor.
Make sure that the temperature sensor only outputs positive values.

162 Backlit LCD

Current Limiting Resistor
(Backlight)

Current Limiting Resistor
(Contrast)

Pushbutton

Analogue Temperature Sensor

Connect It Up
Use the exact same circuit that you set up for Project 23. Then add a pushbutton and temperature sensor
as shown in Figure 8-2.

Figure 8-2. The circuit for Project 24 – LCD Temperature Display (see insert for color version)

I have used an LM35DT temperature sensor, which has a range from 0ºC to 100ºC. You can use any
analogue temperature sensor. The LM35 is rated from -55ºC to +150ºC. You will need to adjust your code
accordingly (more on this later).

Enter The Code
Check your wiring, then upload the code from Listing 8-2.

Listing 8-2. Code for Project 24

// PROJECT 24
#include <LiquidCrystal.h>

// Initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // Create an lcd object and assign the pins
int maxC=0, minC=100, maxF=0, minF=212;
int scale = 1;
int buttonPin=8;

void setup() {
 lcd.begin(16, 2); // Set the display to 16 columns and 2 rows
 analogReference(INTERNAL);
 pinMode(buttonPin, INPUT);
 lcd.clear();
}

void loop() {
 lcd.setCursor(0,0); // Set cursor to home position
 int sensor = analogRead(0); // Read the temp from sensor
 int buttonState = digitalRead(buttonPin); // Check for button press
 switch (buttonState) { // Change scale state if pressed
 case HIGH:
 scale=-scale; // Invert scale
 lcd.clear();
 }

 delay(250);
 switch (scale) { // Decide if C or F scale
 case 1:
 celsius(sensor);
 break;
 case -1:
 fahrenheit(sensor);
 }
}

void celsius(int sensor) {
 lcd.setCursor(0,0);
 int temp = sensor * 0.09765625; // Convert to C
 lcd.print(temp);
 lcd.write(B11011111); // Degree symbol
 lcd.print("C ");
 if (temp>maxC) {maxC=temp;}
 if (temp<minC) {minC=temp;}
 lcd.setCursor(0,1);
 lcd.print("H=");
 lcd.print(maxC);
 lcd.write(B11011111);
 lcd.print("C L=");
 lcd.print(minC);
 lcd.write(B11011111);
 lcd.print("C ");
}

void fahrenheit(int sensor) {
 lcd.setCursor(0,0);
 float temp = ((sensor * 0.09765625) * 1.8)+32; // convert to F
 lcd.print(int(temp));
 lcd.write(B11011111); // Print degree symbol
 lcd.print("F ");
 if (temp>maxF) {maxF=temp;}
 if (temp<minF) {minF=temp;}
 lcd.setCursor(0,1);
 lcd.print("H=");
 lcd.print(maxF);
 lcd.write(B11011111);

 lcd.print("F L=");
 lcd.print(minF);
 lcd.write(B11011111);
 lcd.print("F ");
}

When you run the code the current temperature will be displayed on the top row of the LCD. The

bottom row will display the maximum and minimum temperatures recorded since the Arduino was
turned on or the program was reset. By pressing the button, you can change the temperature scale
between Celsius and Fahrenheit.

Project 24 – LCD Temperature Display – Code Overview
As before, the LiquidCrystal library is loaded into your sketch:

#include <LiquidCrystal.h>

A LiquidCrystal object called lcd is initialized and the appropriate pins set:

LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // Create an lcd object and assign the pins

Some integers to hold the maximum and minimum temperatures in degrees C and F are declared

and initialized with impossible max and min values. These will be changed as soon as the program runs
for the first time.

int maxC=0, minC=100, maxF=0, minF=212;

A variable called scale of type int is declared and initialized with 1. The scale variable will decide if

you are using Celsius or Fahrenheit as your temperature scale. By default, it’s set to 1, which is Celsius.
You can change this to -1 for Fahrenheit.

int scale = 1;

An integer to store the pin being used for the button is declared and initialized:

int buttonPin=8;

In the setup() loop, you set the display to be 16 columns and 2 rows:

lcd.begin(16, 2); // Set the display to 16 columns and 2 rows

The reference for the analogue pin is then set to INTERNAL:

analogReference(INTERNAL);

This gives you a better range on the Arduino’s ADC (Analogue to Digital Convertor). The output

voltage of the LM35DT at 100ºC is 1v. If you were using the default reference of 5 volts, then at 50ºC,
which is half of the sensors range, the reading on the ADC would be 0.5v = (0.5/5)*1023 = 102, which is
only about 10% of the ADC’s range. When using the internal reference voltage of 1.1 volts, the value at
the analogue pin at 50ºC is now 0.5v = (0.5/1.1)*1023 = 465.

As you can see, this is almost half way through the entire range of values that the analogue pin can
read (0 to 1023), therefore the resolution and accuracy of the reading has increased, as has the sensitivity
of the circuit.

The button pin is now set to an input and the LCD display cleared:

pinMode(buttonPin, INPUT);
lcd.clear();

In the main loop, the program starts off by setting the cursor to its home position:

lcd.setCursor(0,0); // Set cursor to home position

Then you read a value from the temperature sensor on Analogue Pin 0:

int sensor = analogRead(0); // Read the temp from sensor

Then you read the state of the button and store the value in buttonState:

int buttonState = digitalRead(buttonPin); // Check for button press

Now you need to know if the button has been pressed or not and if so, to change the scale from

Celsius to Fahrenheit or vice-versa. This is done using a switch/case statement:

 switch (buttonState) { // change scale state if pressed
 case HIGH:
 scale=-scale; // invert scale
 lcd.clear();
 }

This is a new concept: The switch/case command controls the flow of the program by specifying

what code should be run based on what conditions have been met. The switch/case statement compares
the value of a variable with values in the case statements, and if true, runs the code after that case
statement.

For example, if you had a variable called var and you wanted things to happen if its value was either
1, 2, or 3, then you could decide what to do for those values like so:

switch (var) {
 case 1:
 // run this code here if var is 1
 break;
 case 2:
 // run this code here if var is 2
 break;
 case 3:
 // run this code here if var is 3
 break;
 default:
 // if nothing else matches run this code here
 }

The switch/case statement will check the value of var. If it’s 1, it will run the code within the case 1
block up to the break command. The break command is used to exit out of the switch/case statement.
Without it, the code would carry on executing until a break command is reached or the end of the
switch/case statement is reached. If none of the checked-for values are reached, then the code within
the default section will run. Note that the default section is optional and not necessary.

In your case, you only check one case: if the buttonState is HIGH. If so, the value of scale is inverted
(from C to F or vice-versa) and the display is cleared.

Next is a short delay:

delay(250);

Then another switch/case statement to check if the value of scale is either a 1 for Celsius or a -1 for

Fahrenheit and if so to run the appropriate functions:

 switch (scale) { // decide if C or F scale
 case 1:
 celsius(sensor);
 break;
 case -1:
 fahrenheit(sensor);
 }
}

Next you have the two functions to display the temperatures on the LCD. One is for working in

Celsius and the other for Fahrenheit. The functions have a single parameter. You pass it an integer value
that will be the value read from the temperature sensor:

void celsius(int sensor) {

The cursor is set to the home position:

lcd.setCursor(0,0);

Then you take the sensor reading and convert it to degrees Celsius by multiplying by 0.09765625:

int temp = sensor * 0.09765625; // convert to C

This factor is reached by taking 100, which is the range of the sensor and dividing it by the range of

the ADC, which is 1024:

100/1024=0.09765625.

If your sensor had a range from -40 to +150 degrees Celsius, the calculation would be the following

(presuming you had a sensor that did not output negative voltages):

190 / 1024 = 0.185546875

You then print that converted value to the LCD, along with char B11011111, which is a degree

symbol, followed by a C to indicate that you are displaying the temperature in Celsius:

lcd.print(temp);
lcd.write(B11011111); // degree symbol
lcd.print("C ");

Then the current temperature reading is checked to see if it is greater than the currently stored
values of maxC and minC. If so, the values of maxC or minC are changed to the current value of temp.
This will keep a running score of the highest or lowest temperatures read since the Arduino was
turned on.

if (temp>maxC) {maxC=temp;}
if (temp<minC) {minC=temp;}

On the second row of the LCD you print H (for HIGH) and the value of maxC and then an L (for
LOW) followed by the degree symbol and a letter C:

lcd.setCursor(0,1);
lcd.print("H=");
lcd.print(maxC);
lcd.write(B11011111);
lcd.print("C L=");
lcd.print(minC);
lcd.write(B11011111);
lcd.print("C ");

The Fahrenheit function does exactly the same, except it converts the temperature in Celsius to
Fahrenheit by multiplying it by 1.8 and adding 32:

float temp = ((sensor * 0.09765625) * 1.8)+32; // convert to F

Now that you know how to use an LCD to display useful information, you can create your own
projects to display sensor data or to create a simple user interface.

Summary
In Chapter 8, you have explored the most popular functions in the LiquidCrystal.h library: clearing
the display; printing text to specific locations on the screen; making the cursor visible, invisible, or
blinking; and even how to make the text scroll to the left or the right. Project 24 was a simple application
of these functions in a temperature sensor, an oversight of how an LCD could be used in a real project to
display data.

Subjects and Concepts Covered in Chapter 8
• How to load the LiquidCrystal.h library

• How to wire an LCD up to an Arduino

• How to adjust the backlight brightness and display contrast using different resistor
values

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8 ■ LIQUID CRYSTAL DISPLAYS

189

• How to control the backlight brightness from a PWM pin

• How to declare and initialize a LiquidCrystal object

• How to set the correct number of columns and rows on the display

• How to clear the LCD display using .clear()

• How to print to the cursor location using .print()

• How to turn the display on and off using .display() and .noDisplay()

• How to set the cursor location using .setCursor(x, y)

• How to scroll the display left using .scrollDisplayLeft()

• How to scroll the display right using .scrollDisplayRight()

• How to enable or disable the cursor using .cursor() and noCursor()

• How to make a visible cursor blink using .blink()

• How to create custom characters using .createChar()

• How to write a single character to the cursor location using .write()

• How an LCD display works

• How to read values from an analogue temperature sensor

• How to increase ADC resolution using an internal voltage reference

• Decision making using the switch/case statement

• How to convert ADC values to temperature readings in both Celsius and
Fahrenheit

• How to convert the code to read from different temperature sensors with different
ranges

Servos

In this chapter, we are going to look at servos motors or servomechanisms. A servo is a motor with a
feedback system that helps to control the position of the motor. Servos typically rotate through 180
degrees, although you can also buy continuous rotation servos or even modify a standard one for
continuous rotation. If you have ever owned a Radio Controlled Airplane, you have come across servos;
they are used to control the flight surfaces. RC cars use them for the steering mechanism, and RC boats
use them to control the rudder. Likewise, they are often used as the moving joints in small robot arms
and for controlling movement in animatronics. Perhaps by the end of this chapter you’ll be inspired to
put some servos inside a teddy bear or other toy to make it move. Figures 9-1 and 9-2 show other ways to
use servos.

Figure 9-1. A servo being used to control a meter (image by Tod E. Kurt)

Servos are really easy to control thanks to the Servo.h library that comes with the Arduino IDE. The
three projects in this chapter are all quite simple and small compared to some of the other projects in
the book and yet are very effective. Let’s start off with a really simple program to control one servo, then
move onto two servos, and finish with two servos controlled by a joystick.

Figure 9-2. Three servos controlling a head and eyeballs for a robot (image by Tod E. Kurt)

Project 25 – Servo Control
In this very simple project you will control a single servo using a potentiometer.

Parts Required
You will need to obtain a standard RC servo; any of the small or mid-sized servos will do. Larger servos
are not recommended because they require their own power supply as they consume a lot of current.
Also, you’ll need a potentiometer; pretty much any value rotary potentiometer will do. I used a 4.7K ohm
one for testing. Note that you may also wish to connect your Arduino to an external DC power supply.

Standard RC Servo

Rotary Potentiometer

Connect It Up
The circuit for Project 25 is extremely simple. Connect it as shown in Figure 9-3.

Figure 9-3. The circuit for Project 25 – Servo Control (see insert for color version)

The servo has three wires coming from it. One will be red and will go to +5v. One will be black
or brown and will go to Ground. The third will be white, yellow, or orange and will be connected to
Digital Pin 5.

The rotary potentiometer has the outer pins connected to +5v and Ground and the middle pin to
Analog Pin 0.

Once you are happy everything is connected as it should be, enter the code below.

Enter The Code
And now for one of the shortest programs in the book, see Listing 9-1!

Listing 9-1. Code for Project 25

// Project 25
#include <Servo.h>

Servo servo1; // Create a servo object

void setup()
{
 servo1.attach(5); // Attaches the servo on Pin 5 to the servo object
}

void loop()
{
 int angle = analogRead(0); // Read the pot value
 angle=map(angle, 0, 1023, 0, 180); // Map the values from 0 to 180 degrees
 servo1.write(angle); // Write the angle to the servo
 delay(15); // Delay of 15ms to allow servo to reach position
}

Project 25 – Servo Control – Code Overview
First, the Servo.h library is included:

#include <Servo.h>

Then a Servo object called servo1 is declared:

Servo servo1; // Create a servo object

In the setup loop, you attach the servo you have just created to Pin 5:

servo1.attach(5); // Attaches the servo on Pin 5 to the servo object

The attach command attaches a created servo object to a designated pin. The attach command can

take either one parameter, as in your case, or three parameters. If three parameters are used, the first
parameter is the pin, the second is the minimum (0 degree) angle in pulse width in microseconds
(defaults to 544), and the third parameter is the maximum degree angle (180 degrees) in pulse width in
microseconds (defaults to 2400). This will be explained in the hardware overview. For most purposes you
can simply set the pin and ignore the optional second and third parameters.

You can connect up to 12 servos to an Arduino Duemilanove (or equivalent) and up to 48 on the
Arduino Mega—perfect for robotic control applications!

Note that using this library disables the analogWrite (PWM) function on Pins 9 and 10. On the Mega
you can have up to 12 motors without interfering with the PWM functions. The use of between 12 and 23
motors will disable the PWM functionality on Pins 11 and 12.

In the main loop, read the analog value from the potentiometer connected to Analog Pin 0:

int angle = analogRead(0); // Read the pot value

Then that value is mapped so the range is now between 0 and 180, which will correspond to the

degree angle of the servo arm:

angle=map(angle, 0, 1023, 0, 180); // Map the values from 0 to 180 degrees

Then you take your servo object and write the appropriate angle, in degrees, to it (the angle must be

between 0 and 180 degrees):

servo1.write(angle); // Write the angle to the servo

Finally, a delay of 15ms is programmed to allow the servo time to move into position:

delay(15); // Delay of 15ms to allow servo to reach position

You can also detach() a servo from a pin, which will disable it and allow the pin to be used for

something else. Also, you can read() the current angle from the servo (this is the last value passed to the
write() command).

You can read more about the Servo library on the Arduino website at http://arduino.cc/
en/Reference/Servo.

Project 25 – Servo Control – Hardware Overview
A servo is a little box that contains a DC electric motor, a set of gears between the motor and an output
shaft, a position sensing mechanism, and the control circuit. The position sensing mechanism feeds
back the servo’s position to the control circuitry, which uses the motor to adjust the servo arm to the
position that the servo should be at.

Servos come in many sizes, speeds, strengths, and precisions. Some of them can be quite expensive.
The more powerful or precise the servo is, the higher the price. Servos are most commonly used in radio
controlled aircraft, cars, and boats.

The servo’s position is controlled by providing a set of pulses. This is PWM, which you have come
across before. The width of the pulses is measured in milliseconds. The rate at which the pulses are sent
isn’t particularly important; it’s the width of the pulse that matters to the control circuit. Typical pulse
rates are between 400Hz and 50Hz.

On a standard servo the center position is reached by providing pulses at 1.5 millisecond intervals,
the -45 degree position by providing 0.6 millisecond pulses, and the +45 degree position by providing 2.4
millisecond pulses. You will need to read the datasheet for your servo to find the pulse widths required
for the different angles. However, you are using the Servo.h library for this project, so you don’t need to
worry: the library provides the required PWM signal to the servo. Whenever you send a different angle
value to the servo object, the code in the library takes care of sending the correct PWM signal to the
servo.

Some servos provide continuous rotation. Alternatively, you can modify a standard servo relatively
easily to provide continuous rotation.

http://arduino.cc

Figure 9-4. Modifying a servo to provide continuous rotation (image by Adam Grieg)

A continuous rotation servo is controlled in the same way, by providing an angle between 0 and 180
degrees. However, a value of 0 will provide rotation at full speed in one direction, a value of 90 will be
stationary, and a value of 180 will provide rotation at full speed in the opposite direction. Values in-
between these will make the servo rotate in one direction or the other and at different speeds.
Continuous rotation servos are great for building small robots (see Figure 9-4). They can be connected to
wheels to provide precise speed and direction control of each wheel.

There is another kind of servo known as a linear actuator that rotates a shaft to a desired position
allowing you to push and pull items connected to the end of the shaft. These are used a lot in the TV
program “Mythbusters” by their resident robotics expert, Grant Imahara.

Project 26 – Dual Servo Control
You’ll now create another simple project, but this time you’ll control two servos using commands from
the serial monitor. You learned about serial control in Project 10 when you were changing the colors on
an RGB lamp with serial commands. So let’s cannibalize the code from Project 10 to make this one.

Parts Required
This project requires two servos. You will not need the potentiometer.

Standard RC Servo 2

Connect It Up
The circuit for Project 26 is again extremely simple. Connect it as shown in Figure 9-5. Basically, you
remove the potentiometer from the last project and wire a second servo up to Digital Pin 6.

Figure 9-5. The circuit for Project 26 – Dual Servo Control (see insert for color version)

Enter The Code
Enter the code in Listing 9-2.

Listing 9-2. Code for Project 26

// Project 26
#include <Servo.h>

char buffer[10];
Servo servo1; // Create a servo object
Servo servo2; // Create a second servo object

void setup()
{
 servo1.attach(5); // Attaches the servo on pin 5 to the servo1 object
 servo2.attach(6); // Attaches the servo on pin 6 to the servo2 object
 Serial.begin(9600);
 Serial.flush();
 servo1.write(90); // Put servo1 at home position
 servo2.write(90); // Put servo2 at home postion
 Serial.println("STARTING...");
}

void loop()
{
 if (Serial.available() > 0) { // Check if data has been entered
 int index=0;
 delay(100); // Let the buffer fill up
 int numChar = Serial.available(); // Find the string length

 if (numChar>10) {
 numChar=10;
 }
 while (numChar--) {
 // Fill the buffer with the string
 buffer[index++] = Serial.read();
 }
 splitString(buffer); // Run splitString function
 }
}

void splitString(char* data) {
 Serial.print("Data entered: ");
 Serial.println(data);
 char* parameter;
 parameter = strtok (data, " ,"); //String to token
 while (parameter != NULL) { // If we haven't reached the end of the string...
 setServo(parameter); // ...run the setServo function
 parameter = strtok (NULL, " ,");
 }
 // Clear the text and serial buffers
 for (int x=0; x<9; x++) {
 buffer[x]='\0';
 }
 Serial.flush();
}

void setServo(char* data) {
 if ((data[0] == 'L') || (data[0] == 'l')) {
 int firstVal = strtol(data+1, NULL, 10); // String to long integer
 firstVal = constrain(firstVal,0,180); // Constrain values
 servo1.write(firstVal);
 Serial.print("Servo1 is set to: ");
 Serial.println(firstVal);
 }
 if ((data[0] == 'R') || (data[0] == 'r')) {
 int secondVal = strtol(data+1, NULL, 10); // String to long integer
 secondVal = constrain(secondVal,0,255); // Constrain the values
 servo2.write(secondVal);
 Serial.print("Servo2 is set to: ");
 Serial.println(secondVal);
 }
}

To run the code, open up the Serial Monitor window. The Arduino will reset, and the servos will
move to their central locations. You can now use the Serial Monitor to send commands to the Arduino.

The left servo is controlled by sending an L and then a number between 0 and 180 for the angle. The
right servo is controlled by sending an R and the number. You can send individual commands to each
servo or send them both commands at the same time by separating the commands with a space or
comma, like so:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

L180
L45 R135
L180,R90
R77
R25 L175

This is a simple example of how you could send commands down a wire to an Arduino-controlled

robot arm or an animatronic toy. Note that the serial commands don’t have to come from the Arduino
Serial Monitor. You can use any program that is capable of communicating over serial or write your own
in Python or C++.

Project 26 – Dual Servo Control – Code Overview
The code for this project is basically unchanged from that of Project 10. I will therefore not go into each
command in detail. Instead, I will give an overview if it is something already covered. Read up on Project
10 for a refresher on how the string manipulation commands work.

First the Servo.h library is included:

#include <Servo.h>

Then an array of type char is created to hold the text string you enter as a command into the serial

monitor:

char buffer[10];

Two servo objects are created:

Servo servo1; // Create a servo object
Servo servo2; // Create a second servo object

In the setup routine, attach the servo objects to Pins 5 and 6:

servo1.attach(5); // Attaches the servo on pin 5 to the servo1 object
servo2.attach(6); // Attaches the servo on pin 6 to the servo2 object

Then begin serial communications and carry out a Serial.flush() command, which flushes any

characters out of the serial buffer so it is empty and ready to receive commands for the servos:

Serial.begin(9600);
Serial.flush();

Both servos have a value of 90, which is the centre point, written to them so that they start off in the

central position:

servo1.write(90); // Put servo1 at home position
servo2.write(90); // Put servo2 at home position

Then the word “STARTING......” is displayed in the Serial Monitor window so you know the device is
ready to receive commands:

Serial.println("STARTING...");

In the main loop, check if any data has been sent down the serial line

if (Serial.available() > 0) { // check if data has been entered

and if so, let the buffer fill up and obtain the length of the string, ensuring it does not overflow above the
maximum of 10 characters. Once the buffer is full, you call the splitString routine sending the buffer
array to the function:

int index=0;
delay(100); // Let the buffer fill up
int numChar = Serial.available(); // Find the string length
if (numChar>10) {
 numChar=10;
}
while (numChar--) {
 // Fill the buffer with the string
 buffer[index++] = Serial.read();
}
splitString(buffer); // Run splitString function

The splitString function receives the buffer array, splits it into separate commands if more than

one is entered, and calls the setServo routine with the parameter stripped from the command string
received over the serial line:

void splitString(char* data) {
 Serial.print("Data entered: ");
 Serial.println(data);
 char* parameter;
 parameter = strtok (data, " ,"); //String to token
 while (parameter != NULL) { // If we haven't reached the end of the string...
 setServo(parameter); // ...run the setServo function
 parameter = strtok (NULL, " ,");
 }
 // Clear the text and serial buffers
 for (int x=0; x<9; x++) {
 buffer[x]='\0';
 }
 Serial.flush();
}

The setServo routine receives the smaller string sent from the splitString function and checks if an

L or R is entered, and if so, moves either the left or right servo by the amount specified in the string:

void setServo(char* data) {
 if ((data[0] == 'L') || (data[0] == 'l')) {
 int firstVal = strtol(data+1, NULL, 10); // String to long integer
 firstVal = constrain(firstVal,0,180); // Constrain values
 servo1.write(firstVal);
 Serial.print("Servo1 is set to: ");
 Serial.println(firstVal);
 }
 if ((data[0] == 'R') || (data[0] == 'r')) {
 int secondVal = strtol(data+1, NULL, 10); // String to long integer
 secondVal = constrain(secondVal,0,255); // Constrain the values
 servo2.write(secondVal);
 Serial.print("Servo2 is set to: ");
 Serial.println(secondVal);

I’ve glossed over these last two functions as they are almost identical to those in Project 10. If you

cannot remember what was covered in Project 10, feel free to go back and reread it.

Project 27 – Joystick Servo Control
For another simple project, let’s use a joystick to control the two servos. You’ll arrange the servos in such
a way that you get a pan-tilt head, such as is used for CCTV cameras or for camera or sensor mounts on
robots.

Parts Required
Leave the circuit as it was for the last project, and add either two potentiometers or a 2-axis
potentiometer joystick.

Standard RC Servo 2

2-axis potentiometer joystick
(or two potentiometers)

Connect It Up
The circuit for Project 27 is the same as for Project 26, with the addition of the joystick.

Figure 9-6. The circuit for Project 27 – Joystick Servo Control (see insert for color version)

A potentiometer joystick is simply that: a joystick made up of two potentiometers at right angles to
each other. The axles of the pots are connected to a lever that is swung back and forth by the stick and
returned to their centre positions thanks to a set of springs.

Connection is therefore easy: the outer pins of the two pots going to +5v and Ground and the centre
pins going to Analog Pins 3 and 4. If you don’t have a joystick, two potentiometers arranged at 90 degrees
to each other will suffice.

Connect the two servos so that one has its axle vertical and the other horizontal at 90 degrees to the
first servo and attached to the first servo’s armature sideways. See Figure 9-7 for how to connect the
servos. Some hot glue will do for testing. Use stronger glue for a permanent fixing.

Alternatively, get one of the ready-made pan and tilt servo sets you can buy for robotics. These can
be picked up cheaply on eBay.

When the bottom servo moves it causes the top servo to rotate, and when the top servo moves its
arm rocks back and forth. You could attach a webcam or an ultrasonic sensor to the arm, for example.

Figure 9-7. Mount one servo on top of the other (image by David Stokes)

The joystick can be purchased from eBay or an electrical supplier. You could also find an old C64 or
Atari joystick. However, there is a cheap alternative available called a PS2 controller; it contains two 2-
axis potentiometer joysticks as well as a set of vibration motors and other buttons. These can be
purchased on eBay very cheaply and are easily taken apart to access the parts within (see Figure 9-8). If
you don’t want to take the controller apart, you could access the digital code coming from the cable of
the PS2 controller. In fact, there are Arduino libraries to enable you to do just this. This will give you full
access to all of the joysticks and buttons on the device at once.

Figure 9-8. All the great parts available inside a PS2 Controller (image by Mike Prevette)

Enter The Code
Enter the code in Listing 9-3.

Listing 9-3. Code for Project 27

// Project 27
#include <Servo.h>

Servo servo1; // Create a servo object
Servo servo2; // Create a second servo object
int pot1, pot2;

void setup()
{
 servo1.attach(5); // Attaches the servo on pin 5 to the servo1 object
 servo2.attach(6); // Attaches the servo on pin 6 to the servo2 object

 servo1.write(90); // Put servo1 at home position
 servo2.write(90); // Put servo2 at home postion

}

void loop()
{
 pot1 = analogRead(3); // Read the X-Axis
 pot2 = analogRead(4); // Read the Y-Axis
 pot1 = map(pot1,0,1023,0,180);
 pot2=map(pot2,0,1023,0,180);
 servo1.write(pot1);
 servo2.write(pot2);
 delay(15);
}

When you run this program you will be able to use the servos as a pan/tilt head. Rocking the joystick

backwards and forwards will cause the top servo’s armature to rock back and forth, and moving the
joystick from side to side will cause the bottom servo to rotate.

If you find that the servos are going in the opposite direction from what you expected, then you have
the outer pins of the appropriate servo connected the wrong way. Just swap them around.

Project 27 – Joystick Servo Control – Code Overview
Again, this is a very simple project, but the effect of the two servos moving is quite compelling.

The Servo library is loaded:

#include <Servo.h>

Two servo objects are created and two sets of integers hold the values read from the two
potentiometers inside the joystick:

Servo servo1; // Create a servo object
Servo servo2; // Create a second servo object
int pot1, pot2;

The setup loop attaches the two servo objects to Pins 5 and 6 and moves the servos into the central

positions:

servo1.attach(5); // Attaches the servo on Pin 5 to the servo1 object
servo2.attach(6); // Attaches the servo on Pin 6 to the servo2 object

servo1.write(90); // Put servo1 at home position
servo2.write(90); // Put servo2 at home postion

In the main loop, the analog values are read from both the X and Y axis of the joystick:

pot1 = analogRead(3); // Read the X-Axis
pot2 = analogRead(4); // Read the Y-Axis

Those values are then mapped to be between 0 and 180 degrees

pot1 = map(pot1,0,1023,0,180);
pot2 = map(pot2,0,1023,0,180);

and then sent to the two servos

servo1.write(pot1);
servo2.write(pot2);

The range of motion available with this pan/tilt rig is amazing, and you can make the rig move in a

very humanlike way. This kind of servo setup is often made to control a camera for aerial photography
(see Figure 9-9).

Figure 9-9. A pan/tilt rig made for a camera using two servos (image by David Mitchell)

Summary
In Chapter 9, you worked your way through three very simple projects that show how easily servos can
be controlled using the servo.h library. You can easily modify these projects to add up to 12 servos to
make a toy dinosaur, for example, move around in a realistic manner.

Servos are great for making your own RC vehicle or for controlling a robot. Furthermore, as seen in
Figure 9-9, you can make a pan/tilt rig for camera control. A third servo could even be used to push the
shutter button on the camera.

Subjects and Concepts Covered in Chapter 9
• The many potential uses for a servo

• How to use the Servo.h library to control between 1 and 12 servos

• How to use a potentiometer as a controller for a servo

• How a servo works

• How to modify a servo to provide continuous rotation

• How to control a set of servos using serial commands

• How to use an analog joystick for dual axis servo control

• How to arrange two servos to create a pan/tilt head

• How a PS2 Controller makes a great source for joystick and button parts

	Prelim
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Introduction
	How to Use This Book
	What You Will Need
	What Exactly is an Arduino?
	Getting Started
	Windows XP Installation
	Windows 7 & Vista Installation
	Mac OSX Installation
	Board and Port Selection

	Upload Your First Sketch
	The Arduino IDE

	Light ’Em Up
	Project 1 – LED Flasher
	Parts Required
	Connecting Everything
	Enter the Code
	Project 1 – LED Flasher – Code Overview
	Project 1 – LED Flasher – Hardware Overview

	Project 2 – S.O.S. Morse Code Signaler
	Project 2 – S.O.S. Morse Code Signaler – Code Overview

	Project 3 – Traffic Lights
	Parts Required
	Connect It Up
	Enter the Code

	Project 4 – Interactive Traffic Lights
	Parts Required
	Connect It Up
	Enter the Code
	Project 4 – Code Overview
	Project 4 – Interactive Traffic Lights Hardware Overview
	Logic States
	Pull-Down Resistors
	Pull-Up Resistors
	The Arduino’s Internal Pull-Up Resistors

	Summary

	LED Effects
	Project 5 – LED Chase Effect
	Parts Required
	Connect It Up
	Enter the Code
	Project 5 – LED Chase Effect – Code Overview

	Project 6 – Interactive LED Chase Effect
	Parts Required
	Connect It Up
	Enter The Code
	Project 6 – Interactive LED Chase Effect – Code Overview
	Project 6 – Interactive LED Chase Effect – Hardware Overview

	Project 7 – Pulsating Lamp
	Parts Required
	Connect It Up
	Enter the Code
	Project 7 – Pulsating Lamp – Code Overview

	Project 8 – RGB Mood Lamp
	Parts Required
	Connect It Up
	Enter the Code
	Project 8 – RGB Mood Lamp – Code Overview

	Project 9 – LED Fire Effect
	Parts Required
	Connect It Up
	Enter the Code
	Project 9 – LED Fire Effect – Code Overview

	Project 10 – Serial Controlled Mood Lamp
	Enter the Code
	Project 10 – Serial Controlled Mood Lamp – Code Overview

	Summary

	Simple Sounders and Sensors
	Project 11 – Piezo Sounder Alarm
	Parts Required
	Connect It Up
	Enter the Code
	Project 11 – Piezo Sounder Alarm – Code Overview
	Project 11 – Piezo Sounder Alarm – Hardware Overview

	Project 12 – Piezo Sounder Melody Player
	Enter the Code
	Project 12 – Piezo Sounder Melody Player – Code Overview

	Project 13 – Piezo Knock Sensor
	Parts Required
	Connect It Up
	Enter the Code
	Project 13 – Piezo Knock Sensor – Code Overview

	Project 14 – Light Sensor
	Parts Required
	Connect It Up
	Enter the Code
	Project 14 – Light Sensor – Hardware Overview

	Summary
	Subjects and Concepts covered in Chapter 4:

	Driving a DC Motor
	Project 15 – Simple Motor Control
	Parts Required
	Connect It Up
	Enter The Code
	Project 15 – Simple Motor Control – Code Overview
	Project 15 – Simple Motor Control – Hardware Overview
	Transistors
	Motors
	Diodes

	Project 16 – Using an L293D Motor Driver IC
	Parts Required
	Connect It Up
	Enter the Code
	Project 16 – Using an L293D Motor Driver IC – Code Overview
	Project 16 – Using an L293D Motor Driver IC – Hardware Overview

	Summary
	Subjects and concepts covered in Chapter 5

	Binary Counters
	Project 17 – Shift Register 8-Bit Binary Counter
	Parts Required
	Connect It Up
	Enter The Code
	The Binary Number System
	Project 17 – Shift Register 8-Bit Binary Counter Hardware Overview
	Project 17 – Shift Register 8-Bit Binary Counter – Code Overview
	Bitwise Operators
	Bitwise AND (&)
	Bitwise OR (|)
	Bitwise XOR (^)
	Bitwise NOT (~)
	Bitshift Left (<<), Bitshift Right (>>)
	Project 17 – Code Overview (continued)

	Project 18 – Dual 8-Bit Binary Counters
	Parts Required
	Connect It Up
	Enter the Code
	Project 18 Code & Hardware Overview

	Summary
	Subjects and Concepts covered in Chapter 6

	LED Displays
	Project 19 – LED Dot Matrix Display – Basic Animation
	Parts Required
	Connect It Up
	Enter the Code
	Project 19 – LED Dot Matrix – Basic Animation – Hardware Overview
	Multiplexing
	Project 19 – LED Dot Matrix – Basic Animation – Code Overview

	Project 20 – LED Dot Matrix Display – Scrolling Sprite
	Enter the Code
	Project 20 – LED Dot Matrix – Scrolling Sprite – Code Overview

	Project 21 – LED Dot Matrix Display – Scrolling Message
	Parts Required
	Connect It Up
	Enter the Code
	Project 21 – LED Dot Matrix – Scrolling Message – Hardware Overview
	Project 21 – LED Dot Matrix – Scrolling Message – Code Overview

	Project 22 – LED Dot Matrix Display – Pong Game
	Parts Required
	Connect It Up
	Upload the Code
	Project 22 – LED Dot Matrix – Pong Game

	Summary
	Subjects and concepts covered in Chapter 7:

	Liquid Crystal Displays
	Project 23 – Basic LCD Control
	Parts Required
	Connect It Up
	Enter The Code
	Project 23 – Basic LCD Control – Code Overview
	Project 23 – Basic LCD Control – Hardware Overview

	Project 24 – LCD Temperature Display
	Parts Required
	Connect It Up
	Enter The Code
	Project 24 – LCD Temperature Display – Code Overview

	Summary
	Subjects and Concepts Covered in Chapter 8

	Servos
	Project 25 – Servo Control
	Parts Required
	Connect It Up
	Enter The Code
	Project 25 – Servo Control – Code Overview
	Project 25 – Servo Control – Hardware Overview

	Project 26 – Dual Servo Control
	Parts Required
	Connect It Up
	Enter The Code
	Project 26 – Dual Servo Control – Code Overview

	Project 27 – Joystick Servo Control
	Parts Required
	Connect It Up
	Enter The Code
	Project 27 – Joystick Servo Control – Code Overview

	Summary
	Subjects and Concepts Covered in Chapter 9

	Steppers and Robots
	Project 28 – Basic Stepper Control
	Parts Required
	Connect It Up
	Enter the Code
	Project 28 – Basic Stepper Control – Code Overview
	Project 28 – Basic Stepper Control – Hardware Overview

	Project 29 – Using a Motor Shield
	Parts Required
	Connect It Up
	Enter the Code
	Project 29 – Using a Motor Shield – Code Overview
	Project 29 – Using a Motor Shield – Hardware Overview

	Project 30 – Line Following Robot
	Parts Required
	Connect It Up
	Enter the Code
	Project 30 – Line Following Robot – Code Overview

	Summary
	Subjects and Concepts covered in Chapter 10

	Pressure Sensors
	Project 31 – Digital Pressure Sensor
	Parts Required
	Connect It Up
	Enter the Code
	Project 31 – Digital Pressure Sensor – Code Overview
	SPI – Serial Peripherals Interface
	Project 31 – Digital Pressure Sensor – Code Overview (cont.)

	Project 32 – Digital Barograph
	Parts Required
	Connect It Up
	Enter the Code
	Project 32 – Digital Barograph – Code Overview

	Summary
	Subjects and Concepts covered in Chapter 11

	Touch Screens
	Project 33 – Basic Touch Screen
	Parts Required
	Connect It Up
	Enter the Code
	Project 33 – Basic Touch Screen – Hardware Overview
	Project 33 – Basic Touch Screen – Code Overview

	Project 34 – Touch Screen Keypad
	Parts Required
	Connect It Up
	Enter the Code
	Project 34 –Touch Screen Keypad – Code Overview

	Project 35 – Touch Screen Light Controller
	Parts Required
	Connect It Up
	Enter the Code
	Project 35 – Touch Screen Controller – Code Overview

	Summary
	Subjects and Concepts covered in Chapter 12

	Temperature Sensors
	Project 36 – Serial Temperature Sensor
	Parts Required
	Connect It Up
	Enter the Code
	Project 36 – Serial Temperature Sensor – Code Overview

	Project 37 – 1-Wire Digital Temperature Sensor
	Parts Required
	Connect It Up
	Enter the Code
	Project 37 – 1-Wire Digital Temperature Sensor – Code Overview

	Summary
	Subjects and Concepts covered in Chapter 13

	Ultrasonic Rangefinders
	Project 38 – Simple Ultrasonic Rangefinder
	Parts Required
	Connect It Up
	Enter the Code
	Project 38 – Simple Ultrasonic Range Finder – Code Overview
	Project 38 – Simple Ultrasonic Range Finder – Hardware Overview

	Project 39 – Ultrasonic Distance Display
	Parts Required
	Connect It Up
	Enter the Code
	Project 39 – Ultrasonic Distance Display – Code Overview

	Project 40 – Ultrasonic Alarm
	Parts Required
	Connect It Up
	Enter the Code
	Project 40 – Ultrasonic Alarm – Code Overview

	Project 41 – Ultrasonic Theremin
	Enter the Code
	Project 41 – Ultrasonic Theremin – Code Overview

	Summary
	Subjects and Concepts covered in Chapter 14

	Reading and Writing to an SD Card
	Project 42 – Simple SD Card/Read Write
	Parts Required
	Connect It Up
	Enter the Code
	Project 42 – Simple SD Card Read/Write – Code Overview

	Project 43 – Temperature SD Datalogger
	Parts Required
	Connect It Up
	Enter the Code
	Project 43 – Temperature SD Datalogger – Code Overview
	Project 43 – Temperature SD Datalogger – Hardware Overview

	Summary
	Subjects and Concepts covered in Chapter 15

	Making an RFID Reader
	Project 44 – Simple RFID Reader
	Parts Required
	Connect It Up
	Enter the Code
	Project 44 – Simple RFID Reader – Hardware Overview

	Project 45 – Access Control System
	Parts Required
	Connect It Up
	Enter the Code
	Project 45 – Access Control System – Code Overview

	Summary
	Subjects and Concepts covered in Chapter 16

	Communicating over Ethernet
	Project 46 – Ethernet Shield
	Parts Required
	Connect It Up
	Enter the Code
	Project 46 – Ethernet Shield – Code Overview

	Project 47 – Internet Weather Display
	Enter the Code
	Project 47 – Internet Weather Display – Code Overview

	Project 48 – Email Alert System
	Enter the Code
	Project 48 – Email Alert System – Code Overview

	Project 49 – Twitterbot
	Enter the Code
	Project 49 – Twitterbot – Code Overview

	Project 50 – RSS Weather Reader
	Enter the Code
	Project 50 – RSS Weather Reader – Code Overview

	Summary
	Subjects and Concepts covered in Chapter 17:

	Index
	¦Numbers & Symbols
	¦A
	¦B ¦C
	¦D
	¦E
	G
	¦
	¦F ¦H
	I
	¦
	K
	¦
	¦L
	¦J
	M
	¦
	N
	¦
	¦O
	¦P
	¦Q
	¦R
	¦S
	¦T
	¦U ¦V
	¦W
	¦X, Y, Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

